0000000000330140
AUTHOR
Matthew Lawson
Stochastic fluctuations of bosonic dark matter
Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute the dark matter (DM) permeating the universe. In the standard halo model (SHM) of galactic dark matter the velocity distribution of the bosonic DM field defines a characteristic coherence time $\tau_c$. Until recently, laboratory experiments searching for bosonic DM fields have been in the regime where the measurement time $T$ significantly exceeds $\tau_c$, so null results have been interpreted as constraints on the coupling of bosonic DM to standard model particles with a bosonic DM field amplitude $\Phi_0$ fixed by the average local DM density. However, motivate…
A network of superconducting gravimeters as a detector of matter with feeble nongravitational coupling
Abstract Hidden matter that interacts only gravitationally would oscillate at characteristic frequencies when trapped inside of Earth. For small oscillations near the center of the Earth, these frequencies are around 300 μHz. Additionally, signatures at higher harmonics would appear because of the non-uniformity of Earth’s density. In this work, we use data from a global network of gravimeters of the International Geodynamics and Earth Tide Service (IGETS) to look for these hypothetical trapped objects. We find no evidence for such objects with masses on the order of 1014 kg or greater with an oscillation amplitude of 0.1 re. It may be possible to improve the sensitivity of the search by s…
Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance.
Physical review letters 126(14), 141802 (2021). doi:10.1103/PhysRevLett.126.141802
A network of precision gravimeters as a detector of matter with feeble nongravitational coupling
Hidden matter that interacts only gravitationally would oscillate at characteristic frequencies when trapped inside of Earth. For small oscillations near the center of the Earth, these frequencies are around 300 $\mu$Hz. Additionally, signatures at higher harmonics would appear because of the non-uniformity of Earth's density. In this work, we use data from a global network of gravimeters of the International Geodynamics and Earth Tide Service (IGETS) to look for these hypothetical trapped objects. We find no evidence for such objects with masses on the order of 10$^{14}$ kg or greater with an oscillation amplitude of 0.1 $r_e$. It may be possible to improve the sensitivity of the search by…