0000000000330741

AUTHOR

Edgars Suna

0000-0002-3078-0576

showing 12 related works from this author

Simple and scalable electrochemical synthesis of 2,1-benzisoxazoles and quinoline N-oxides.

2019

Cathodic reduction of the nitro moiety and subsequent intramolecular cyclization affords different substituted 2,1-benzisoxazoles and quinoline N-oxides. This methodology allows the synthesis of two different types of heterocycles from common simple starting materials, using electrons as a sole reagent for this transformation. The electrolysis can be conducted in a very simple undivided electrolysis cell under constant current conditions. This permits working on a larger scale compared to other electrochemical methodologies and represents a significant advantage.

Electrolysis010405 organic chemistryElectrolytic cellQuinolineMetals and AlloysGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesCombinatorial chemistryCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundchemistrylawReagentMaterials ChemistryCeramics and CompositesNitroConstant currentMoietyChemical communications (Cambridge, England)
researchProduct

Preparative-Scale Synthesis of Vedejs Chiral DMAP Catalysts

2018

A scalable synthesis of chiral Vedejs-type DMAP catalysts is reported. The key step of the synthesis is amination of the enantiomerically pure 4-chloropyridine derivative using well-defined ZnCl2(amine)2 complexes. A series of Zn(II)–amine complexes have been synthesized to explore the scope of the ZnCl2-mediated amination of 4-halopyridines. Mechanistic studies support a Zn(II)-facilitated nucleophilic aromatic substitution as a plausible mechanism for the chlorine-to-amine exchange.

010405 organic chemistryOrganic Chemistry010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryNucleophilic aromatic substitutionpolycyclic compoundsAmine gas treatingDerivative (chemistry)AminationThe Journal of Organic Chemistry
researchProduct

Development of a Chiral DMAP Catalyst for the Dynamic Kinetic Resolution of Azole Hemiaminals

2017

A new catalyst for the dynamic kinetic resolution of azole hemiaminals has been developed using late-stage structural modifications of the tert-leucinol-derived chiral subunit of DMAP species.

chemistry.chemical_classification010405 organic chemistryChemistryOrganic ChemistryOrganic chemistryAzole010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesCatalysisKinetic resolutionThe Journal of Organic Chemistry
researchProduct

Acylative Dynamic Kinetic Resolution of Secondary Alcohols: Tandem Catalysis by HyperBTM and Bäckvall's Ruthenium Complex.

2021

Non-enzymatic dynamic kinetic resolution (DKR) of secondary alcohols by enantioselective acylation using an isothiourea-derived HyperBTM catalyst and racemization of slowly reacting alcohol by Backvall's ruthenium complex is reported. The DKR approach features high enantioselectivities (up to 99:1), employs easy-to-handle crystalline 4-nitrophenyl isobutyrate as the acylating reagent, and proceeds at room temperature and under an ambient atmosphere. The stereoinduction model featuring cation-π system interactions between the acylated HyperBTM catalyst and π electrons of an alcohol aryl subunit has been elaborated by DFT calculations.

inorganic chemicals010405 organic chemistryArylOrganic ChemistryEnantioselective synthesischemistry.chemical_elementStereoisomerism010402 general chemistry01 natural sciencesCombinatorial chemistryCatalysisRuthenium0104 chemical sciencesRutheniumCatalysisKinetic resolutionAcylationchemistry.chemical_compoundKineticschemistryReagentAlcoholsRacemizationThe Journal of organic chemistry
researchProduct

N‐Terminal Modification of Gly‐His‐Tagged Proteins with Azidogluconolactone

2021

Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed diffe…

Models MolecularAzidesCOVID-19 VaccinesGlycosylationvirusesGlycineGluconatesBiochemistryLactoneschemistry.chemical_compoundAntigenHumansHistidineVaccines Virus-Like ParticleSeroconversionMolecular Biologychemistry.chemical_classificationMolecular StructurebiologyChemistryOrganic ChemistryAntibodies NeutralizingBiopharmaceuticalBiochemistrybiology.proteinClick chemistryMolecular MedicineAntibodyGlycoproteinConjugateChemBioChem
researchProduct

CCDC 1875521: Experimental Crystal Structure Determination

2018

Related Article: Artis Kinens, Simonas Balkaitis, and Edgars Suna|2018|J.Org.Chem.|83|12449|doi:10.1021/acs.joc.8b01687

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdichloro-bis(morpholine)-zinc(ii)Experimental 3D Coordinates
researchProduct

CCDC 1875522: Experimental Crystal Structure Determination

2018

Related Article: Artis Kinens, Simonas Balkaitis, and Edgars Suna|2018|J.Org.Chem.|83|12449|doi:10.1021/acs.joc.8b01687

Space GroupCrystallographyCrystal Systemdichloro-[bis(pyrrolidine)]-zincCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1528810: Experimental Crystal Structure Determination

2017

Related Article: Artis Kinens, Marcis Sejejs, Adam S. Kamlet, David W. Piotrowski, Edwin Vedejs, Edgars Suna|2017|J.Org.Chem.|82|869|doi:10.1021/acs.joc.6b02955

Space GroupCrystallography1-[5-(4-nitrophenyl)-2H-tetrazol-2-yl]ethyl (4-bromophenyl)acetateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1528809: Experimental Crystal Structure Determination

2017

Related Article: Artis Kinens, Marcis Sejejs, Adam S. Kamlet, David W. Piotrowski, Edwin Vedejs, Edgars Suna|2017|J.Org.Chem.|82|869|doi:10.1021/acs.joc.6b02955

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates1-[5-(4-nitrophenyl)-2H-tetrazol-2-yl]ethyl fluoro(phenyl)acetate
researchProduct

CCDC 1875523: Experimental Crystal Structure Determination

2018

Related Article: Artis Kinens, Simonas Balkaitis, and Edgars Suna|2018|J.Org.Chem.|83|12449|doi:10.1021/acs.joc.8b01687

Space GroupCrystallographyCrystal Systembis(dimethylammonium) tetrachloro-zinc(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1875525: Experimental Crystal Structure Determination

2018

Related Article: Artis Kinens, Simonas Balkaitis, and Edgars Suna|2018|J.Org.Chem.|83|12449|doi:10.1021/acs.joc.8b01687

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdichloro-bis[diphenyl(pyrrolidin-2-yl)methanol]-zinc(ii)Experimental 3D Coordinates
researchProduct

CCDC 1875524: Experimental Crystal Structure Determination

2018

Related Article: Artis Kinens, Simonas Balkaitis, and Edgars Suna|2018|J.Org.Chem.|83|12449|doi:10.1021/acs.joc.8b01687

Space GroupCrystallographydichloro-bis(1-phenylethan-1-amine)-zinc(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct