0000000000330861

AUTHOR

Yuanwei Liu

0000-0002-6389-8941

showing 3 related works from this author

User Grouping and Power Allocation in NOMA Systems: A Reinforcement Learning-Based Solution

2020

In this paper, we present a pioneering solution to the problem of user grouping and power allocation in Non-Orthogonal Multiple Access (NOMA) systems. There are two fundamentally salient and difficult issues associated with NOMA systems. The first involves the task of grouping users together into the pre-specified time slots. The subsequent second phase augments this with the solution of determining how much power should be allocated to the respective users. We resolve this with the first reported Reinforcement Learning (RL)-based solution, which attempts to solve the partitioning phase of this issue. In particular, we invoke the Object Migration Automata (OMA) and one of its variants to re…

Theoretical computer scienceLearning automataComputer science020206 networking & telecommunications02 engineering and technologymedicine.diseaseTask (project management)AutomatonPower (physics)NomaSalient0202 electrical engineering electronic engineering information engineeringmedicineReinforcement learningGreedy algorithm
researchProduct

User grouping and power allocation in NOMA systems: a novel semi-supervised reinforcement learning-based solution

2022

Author's accepted manuscript In this paper, we present a pioneering solution to the problem of user grouping and power allocation in non-orthogonal multiple access (NOMA) systems. The problem is highly pertinent because NOMA is a well-recognized technique for future mobile radio systems. The salient and difcult issues associated with NOMA systems involve the task of grouping users together into the prespecifed time slots, which are augmented with the question of determining how much power should be allocated to the respective users. This problem is, in and of itself, NP-hard. Our solution is the frst reported reinforcement learning (RL)-based solution, which attempts to resolve parts of thi…

Artificial IntelligenceComputer Vision and Pattern RecognitionVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550
researchProduct

Learning Automata Based Q-learning for Content Placement in Cooperative Caching

2019

An optimization problem of content placement in cooperative caching is formulated, with the aim of maximizing sum mean opinion score (MOS) of mobile users. Firstly, a supervised feed-forward back-propagation connectionist model based neural network (SFBC-NN) is invoked for user mobility and content popularity prediction. More particularly, practical data collected from GPS-tracker app on smartphones is tackled to test the accuracy of mobility prediction. Then, a learning automata-based Q-learning (LAQL) algorithm for cooperative caching is proposed, in which learning automata (LA) is invoked for Q-learning to obtain an optimal action selection in a random and stationary environment. It is p…

Signal Processing (eess.SP)Optimization problemLearning automatabusiness.industryComputer scienceMean opinion scoreQ-learningComputingMilieux_LEGALASPECTSOFCOMPUTING020206 networking & telecommunications02 engineering and technologycomputer.software_genreAction selectionIntelligent agentRecurrent neural networkFOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingQuality of experienceArtificial intelligenceElectrical and Electronic EngineeringElectrical Engineering and Systems Science - Signal ProcessingbusinessVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550computer
researchProduct