0000000000330987

AUTHOR

R. Bonaventura

Cellular and molecular bases of biomineralization in sea urchin embryos

Sea urchin embryos construct their skeleton following a precise gene-regulated time- and space-dependent programme, in concert with factors promoting cell adhesion and differentiation. The biomineral is deposited in a privileged extracellular space produced by the fused filopodia processes of the primary mesenchyme cells, the only cells producing a set of necessary matrix proteins. More than ten years ago we showed for the first time that signals from ectoderm cells promoted the expression of one of the major skeleton matrix genes by the primary mesenchyme cells. Since then, many of the crucial steps of this complex activation cascade, from ectoderm cells to embryonic spicules, have been el…

research product

Biotecnologie e monitoraggio ambientale: sviluppo e applicazione di biomarcatori molecolari.

research product

Environmentally relevant cadmium concentrations affect development and induce apoptosis of Paracentrotus lividus larvae cultured in vitro. Epub ahead of print.

Sea urchin embryos and larvae represent suitable model systems on where to investigate the effects of heavy metals on development and cell viability. Here, we tested the toxic effects of low (10(-12 )M), medium (10(-9 )M), and high (10(-6 )M) cadmium chloride concentrations, mimicking unpolluted, moderately and highly polluted seawaters, respectively, on Paracentrotus lividus sea urchins offspring. Larvae were continuously treated from fertilization and inspected at time intervals comprised between 10 and 30 days of development. Delays and/or morphological abnormalities were firstly evident in larvae treated for 15 days with high cadmium (10(-6 )M) and for 25 days with medium cadmium (10(-9…

research product

Immune cells from sea urchins as biosensors for monitoring physical and chemical stress.

research product