0000000000331049

AUTHOR

Francis L. Pratt

0000-0002-5919-3885

showing 3 related works from this author

Brief encounter at the molecular level: what muons tell us about molecule-based magnets

2005

Abstract Spin-polarized muons can be implanted in various molecular magnetic materials in order to measure static and dynamic magnetic field distributions at a local level. The positively-charged muon is an unstable, radioactive particle which has spin–1/2, a lifetime of 2.2 μ S , about one-ninth of the proton mass and a magnetic moment of approximately 1/200 μ B . Both pulsed and continuous beams of muons can be produced with almost 100% spin polarization and significant intensity at various accelerator facilities. The subsequent decay of the muon into a positron allows the extraction of the muon-spin autocorrelation function which can be related to the magnetic field distribution inside a…

PhysicsMuonSpin polarizationMagnetismMechanical EngineeringMetals and AlloysMuon spin spectroscopyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetic fieldNuclear physicsFerromagnetismMechanics of MaterialsMagnetMaterials ChemistryPhysics::Accelerator PhysicsMolecule-based magnetsSynthetic Metals
researchProduct

Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors

2013

Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electro…

PhotoluminescenceMaterials scienceGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesSpin-Orbit InteractionHyperfine structureComputingMilieux_MISCELLANEOUSCondensed matter physicsSpintronicsbusiness.industryOrganic SemiconductorRelaxation (NMR)Settore FIS/01 - Fisica SperimentaleSpin–orbit interactionMuon spin spectroscopy021001 nanoscience & nanotechnology0104 chemical sciencesOrganic semiconductorSemiconductorElectron Spin RelaxationCondensed Matter::Strongly Correlated Electrons[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]0210 nano-technologybusiness
researchProduct

Magnetic order and local field distribution in the hybrid magnets [FeCp*(2)][MnCr(ox)(3)] and [CoCp*(2)][FeFe(ox)(3)]: a muon spin relaxation study

2016

Zero-field muon spin relaxation (μ+SR) measurements on materials from the series [ZIIICp*2][M IIMIII(ox)3] show precession signals at several frequencies, characteristic of quasistatic magnetic fields at up to three distinct muon sites.

PhysicsMuonCondensed matter physicsPhysics::Instrumentation and DetectorsMagnetRelaxation (NMR)Materials ChemistryPrecessionGeneral ChemistryMuon spin spectroscopyLocal fieldQuasistatic processMagnetic field
researchProduct