0000000000331052

AUTHOR

Stephen J. Blundell

showing 4 related works from this author

Brief encounter at the molecular level: what muons tell us about molecule-based magnets

2005

Abstract Spin-polarized muons can be implanted in various molecular magnetic materials in order to measure static and dynamic magnetic field distributions at a local level. The positively-charged muon is an unstable, radioactive particle which has spin–1/2, a lifetime of 2.2 μ S , about one-ninth of the proton mass and a magnetic moment of approximately 1/200 μ B . Both pulsed and continuous beams of muons can be produced with almost 100% spin polarization and significant intensity at various accelerator facilities. The subsequent decay of the muon into a positron allows the extraction of the muon-spin autocorrelation function which can be related to the magnetic field distribution inside a…

PhysicsMuonSpin polarizationMagnetismMechanical EngineeringMetals and AlloysMuon spin spectroscopyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetic fieldNuclear physicsFerromagnetismMechanics of MaterialsMagnetMaterials ChemistryPhysics::Accelerator PhysicsMolecule-based magnetsSynthetic Metals
researchProduct

Coexistence of superconductivity and magnetism by chemical design.

2010

Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of supercon…

SuperconductivityCondensed matter physicsChemistryMagnetismGeneral Chemical EngineeringTransition temperatureElectric ConductivityHeterojunctionGeneral ChemistryNanostructuresMagneticsCoordination ComplexesElectrical resistivity and conductivityTransition TemperatureChemical designNature chemistry
researchProduct

Magnetic order and local field distribution in the hybrid magnets [FeCp*(2)][MnCr(ox)(3)] and [CoCp*(2)][FeFe(ox)(3)]: a muon spin relaxation study

2016

Zero-field muon spin relaxation (μ+SR) measurements on materials from the series [ZIIICp*2][M IIMIII(ox)3] show precession signals at several frequencies, characteristic of quasistatic magnetic fields at up to three distinct muon sites.

PhysicsMuonCondensed matter physicsPhysics::Instrumentation and DetectorsMagnetRelaxation (NMR)Materials ChemistryPrecessionGeneral ChemistryMuon spin spectroscopyLocal fieldQuasistatic processMagnetic field
researchProduct

Lattice-Site-Specific Spin Dynamics in Double PerovskiteSr2CoOsO6

2014

Magnetic properties and spin dynamics have been studied for the structurally ordered double perovskite Sr2CoOsO6. Neutron diffraction, muon-spin relaxation, and ac-susceptibility measurements reveal two antiferromagnetic (AFM) phases on cooling from room temperature down to 2 K. In the first AFM phase, with transition temperature TN1=108  K, cobalt (3d7, S=3/2) and osmium (5d2, S=1) moments fluctuate dynamically, while their average effective moments undergo long-range order. In the second AFM phase below TN2=67  K, cobalt moments first become frozen and induce a noncollinear spin-canted AFM state, while dynamically fluctuating osmium moments are later frozen into a randomly canted state at…

Materials scienceSpin dynamicsCondensed matter physicsTransition temperatureNeutron diffractionGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryLattice (order)0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsOsmium010306 general physics0210 nano-technologyCobaltAFm phasePhysical Review Letters
researchProduct