0000000000331158

AUTHOR

Michael Di Palma

showing 2 related works from this author

Increase of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems via allosteric receptor-receptor int…

2015

The ascending midbrain 5-HT neurons known to contain 5-HT1A autoreceptors may be dysregulated in depression due to a reduced trophic support. New findings show existence of FGFR1-5-HT1A heteroreceptor complexes in the rat hippocampus with a partial characterization of their interface and in midbrain raphe 5-HT nerve cells. With in situ Proximity Ligation Assay (PLA) and supported by co-location of the FGFR1 and 5-HT1A immunoreactivities in midbrain raphe 5-HT cells, evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes were obtained in the dorsal and median raphe nuclei of the Sprague–Dawley rat. Their existence in the rat medullary raphe RN33B cell cultures was also establish…

Agonistmedicine.medical_specialtymedicine.drug_classheteroreceptor complexesBiologyHeteroreceptorMidbrain03 medical and health sciences0302 clinical medicineDorsal raphe nucleusInternal medicinemedicineMultidisciplinaryRapheReceptor-receptor interactionCell biologyEndocrinologymedicine.anatomical_structureserotonin 5-HT1A receptornervous system030220 oncology & carcinogenesisPoster Presentationfibroblast growth factor receptorAutoreceptorNeuron030217 neurology & neurosurgerySpringerPlus
researchProduct

Detection, Analysis, and Quantification of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity …

2018

GPCR’s receptosome operates via coordinated changes between the receptor expression, their modifications and interactions between each other. Perturbation in specific heteroreceptor complexes and/or their balance/equilibrium with other heteroreceptor complexes and corresponding homoreceptor complexes is considered to have a role in pathogenic mechanisms. Such mechanisms lead to mental and neurological diseases, including drug addiction, depression, Parkinson’s disease, and schizophrenia. To understand the associations of GPCRs and to unravel the global picture of their receptor–receptor interactions in the brain, different experimental detection techniques for receptor–receptor interactions…

0301 basic medicineIn situIn situ proximity ligation assayChemistryCellProximity ligation assayHeteroreceptorSettore BIO/09 - FisiologiaImmunohistochemistryReceptor–receptor interactionStoichiometryNOG protein-coupled receptors Immunohistochemistry In situ proximity ligation assay Heteroreceptor complexes Dimerization Receptor–receptor interaction Stoichiometry03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureG protein-coupled receptorsBiophysicsmedicineHeteroreceptor complexesDimerization030217 neurology & neurosurgeryG protein-coupled receptor
researchProduct