0000000000331368

AUTHOR

Carla E. Cano

Nupr1-Aurora Kinase A Pathway Provides Protection against Metabolic Stress-Mediated Autophagic-Associated Cell Death

Abstract Purpose: The limited supply of oxygen and nutrients is thought to result in rigorous selection of cells that will eventually form the tumor. Experimental Design: Nupr1 expression pattern was analyzed in human tissue microarray (TMA) and correlated with survival time of the patient. Microarray analysis was conducted on MiaPaCa2 cells subjected to metabolic stress in Nupr1-silenced conditions. DNA repair and cell cycle–associated gene expression was confirmed by real-time quantitative PCR (qRT-PCR). Nupr1 and AURKA protective role were analyzed using RNA interference (RNAi) silencing or overexpression. DNA damage and autophagy were analyzed by Western blot analysis and immunofluoresc…

research product

NUPR1 works against the metabolic stress-induced autophagy-associated cell death in pancreatic cancer cells.

The incidence of pancreatic adenocarcinoma is increasing with more than 43,000 predicted new cases in the US and 65,000 in Europe this year. Pancreatic cancer patients have a short life expectancy with less than 3–4% 5-y survival, which results in an equivalent incidence and mortality rate. One of the major challenges in pancreatic cancer is the identification of pharmacological approaches that overcome the resistance of this cancer to therapy. Intensive research in the past decades has led to the classification of pancreatic cancers and the identification of the driver key genetic events. Despite the advances in understanding the molecular mechanisms responsible for pancreatic cancer patho…

research product

Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development.

Pancreatic cancer is a disease with an extremely poor prognosis. Tumor protein 53-induced nuclear protein 1 ( TP53INP1 ) is a proapoptotic stress-induced p53 target gene. In this article, we show by immunohistochemical analysis that TP53INP1 expression is dramatically reduced in pancreatic ductal adenocarcinoma (PDAC) and this decrease occurs early during pancreatic cancer development. TP53INP1 reexpression in the pancreatic cancer-derived cell line MiaPaCa2 strongly reduced its capacity to form s.c., i.p., and intrapancreatic tumors in nude mice. This anti-tumoral capacity is, at least in part, due to the induction of caspase 3-mediated apoptosis. In addition, TP53INP1 −/− mouse embryonic…

research product