0000000000331603

AUTHOR

Susana Granell

showing 4 related works from this author

Bisbenzyltetrahydroisoquinolines, a New Class of Inhibitors of the Mitochondrial Respiratory Chain Complex I

2004

Four bisbenzyltetrahydroisoquinoline alkaloids (-)-medelline, (+)-antioquine, (+)-aromoline, and (+)-obamegine were isolated from the fruits of Xylopia columbiana. These compounds, the previously isolated alkaloids (+)-thaligrisine and (+)-isotetrandrine, as well as their O-acetylated derivatives were assayed on submitochondrial particles from beef heart as inhibitors of the mammalian respiratory chain. The results revealed that these alkaloids act as selective inhibitors of mitochondrial complex I in a 0.15 - 4.71 microM range. O-Acetylation, which increases their lipophilicity, considerably increased the inhibitory potency.

StereochemistryRespiratory chainAnnonaceaePharmaceutical ScienceBiologyBenzylisoquinolinesMitochondria HeartAnalytical Chemistrylaw.inventionElectron TransportInhibitory Concentration 50lawDrug DiscoveryAnimalsNADH NADPH Oxidoreductasesheterocyclic compoundsMitochondrial respiratory chain complex ISubmitochondrial particleEnzyme InhibitorsPharmacologyPlant ExtractsOrganic Chemistrybiology.organism_classificationElectron transport chainComplementary and alternative medicineBiochemistryAnnonaceaeLipophilicityMolecular MedicineCattlePhytotherapyXylopiaPhytotherapyPlanta Medica
researchProduct

Gamma-lactone-Functionalized antitumoral acetogenins are the most potent inhibitors of mitochondrial complex I.

2001

To study the relevance of the terminal alpha,beta-unsaturated gamma-methyl-gamma-lactone moiety of the antitumoral acetogenins of Annonaceae for potent mitochondrial complex I inhibition, we have prepared a series of semisynthetic acetogenins with modifications only in this part of the molecule, from the natural rolliniastatin-1 (1) and cherimolin-1 (2). Some of the hydroxylated derivatives (1b, 1d and 1e) in addition to two infrequent natural beta-hydroxy gamma-methyl gamma-lactone acetogenins, laherradurin (3) and itrabin (4), are more potent complex I inhibitors than any other known compounds.

StereochemistryClinical BiochemistrySubmitochondrial ParticlesPharmaceutical ScienceAntineoplastic AgentsMitochondrionBiochemistryMitochondria HeartLactonesMagnoliopsidaMultienzyme ComplexesDrug DiscoveryMoietyAnimalsNADH NADPH OxidoreductasesFuransMolecular Biologychemistry.chemical_classificationElectron Transport Complex IbiologyMolecular StructureOrganic ChemistryBiological activitybiology.organism_classificationIn vitroEnzymechemistryEnzyme inhibitorAnnonaceaebiology.proteinMolecular MedicineCattleLactoneBioorganicmedicinal chemistry letters
researchProduct

Circulating TNF-alpha and its soluble receptors during experimental acute pancreatitis.

2004

Clinical and experimental studies have shown increased concentrations of TNF-α and its soluble receptors in serum of patients with acute pancreatitis. In this work, we have investigated the time-course of TNF-α and its soluble receptors during taurocholate-induced acute pancreatitis. In addition, since TNF-α itself could mediate the shedding of its receptors, we have assessed the effect of inhibiting TNF-α production on the release of soluble TNF-α receptors in experimental acute pancreatitis. Our results indicate that soluble receptors are released in the early stages of the disease and this increase is concomitant with the release of TNF-α, which is mainly bound to specific proteins. The …

Malemedicine.medical_specialtyImmunologyInflammationBiochemistryDNA-binding proteinReceptors Tumor Necrosis FactorPentoxifyllineInternal medicinemedicineSIRSImmunology and AllergyAnimalsPentoxifyllineRats WistarReceptorMolecular BiologyInflammationbusiness.industryTumor Necrosis Factor-alphaHematologymedicine.diseasesTNF-αRRatsDisease Models AnimalEndocrinologyPancreatitisSolubilityTNF-αAcute DiseasePancreatitisAcute pancreatitisTumor necrosis factor alphamedicine.symptombusinessmedicine.drugCytokine
researchProduct

Tucumanin, a β-hydroxy-γ-lactone bistetrahydrofuranic acetogenin from Annona cherimolia, is a potent inhibitor of mitochondrial complex I

2004

A new β-hydroxy-γ-methyl-γ-lactone bistetrahydrofuranic acetogenin, tucumanin, with the infrequent symmetrical threo/trans/threo/trans/ threo relative configuration at the tetrahydrofuran rings was isolated from Annona cherimolia (Annonaceae) seeds. The inhibitory potency on the mitochondrial complex I of acetogenins with this relative configuration (tucumanin and asimicin) was compared with that shown by the corresponding pairs with an asymmetrical threo/trans/threo/trans/erythro relative configuration (laherradurin/rolliniastatin-2, and itrabin/molvizarin). All these compounds act as selective inhibitors of mitochondrial complex 1 in the 0.18 - 1.55 nM range. Fil: Barrachina, Isabel. Univ…

StereochemistryChemical structurePharmaceutical Scienceinhibitory potencyBiologyAnnonaMitochondria HeartAnalytical Chemistry//purl.org/becyt/ford/1 [https]chemistry.chemical_compoundInhibitory Concentration 50LactonesDrug Discovery//purl.org/becyt/ford/1.4 [https]HumansEnzyme InhibitorsAnnona cherimoliaFuransTetrahydrofuranPharmacologychemistry.chemical_classificationElectron Transport Complex IPlant ExtractsOtras Ciencias QuímicasOrganic ChemistryDiastereomerCiencias Químicasbiology.organism_classificationβ-hydroxy-γ-methyl-γ-lactoneComplementary and alternative medicinechemistryAnnonaceaeAnnona cherimolia (Annonaceae)AcetogeninSeedsMolecular MedicineMitochondrial Complex ILactonemitochondrial complex ICIENCIAS NATURALES Y EXACTASPhytotherapy
researchProduct