0000000000331803

AUTHOR

D. Van Oosten

showing 4 related works from this author

Quantum Phases in a Resonantly Interacting Boson-Fermion Mixture

2005

We consider a resonantly-interacting Bose-Fermi mixture of $^{40}$K and $^{87}$Rb atoms in an optical lattice. We show that by using a red-detuned optical lattice the mixture can be accurately described by a generalized Hubbard model for $^{40}$K and $^{87}$Rb atoms, and $^{40}$K-$^{87}$Rb molecules. The microscopic parameters of this model are fully determined by the details of the optical lattice and the interspecies Feshbach resonance in the absence of the lattice. We predict a quantum phase transition to occur in this system already at low atomic filling fraction, and present the phase diagram as a function of the temperature and the applied magnetic field.

Condensed Matter::Quantum GasesQuantum phase transitionPhysicsOptical latticeStatistical Mechanics (cond-mat.stat-mech)Hubbard modelFOS: Physical sciencesGeneral Physics and AstronomyQuantum phasesFermionAtomic physicsFeshbach resonanceCondensed Matter - Statistical MechanicsBosonPhase diagramPhysical Review Letters
researchProduct

Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice

2006

Noise in a quantum system is fundamentally governed by the statistics and the many-body state of the underlying particles. Whereas for bosonic particles the correlated noise observed for e.g. photons or bosonic neutral atoms can still be explained within a classical field description with fluctuating phases, the anticorrelations in the detection of fermionic particles have no classical analogue. The observation of such fermionic antibunching is so far scarce and has been confined to electrons and neutrons. Here we report on the first direct observation of antibunching of neutral fermionic atoms. Through an analysis of the atomic shot noise in a set of standard absorption images, of a gas of…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsOptical latticeMultidisciplinaryDegenerate energy levelsFOS: Physical sciencesQuantum phasesFermionCondensed Matter - Soft Condensed MatterFermionic condensateCondensed Matter - Other Condensed MatterQuantum mechanicsQuantum systemSoft Condensed Matter (cond-mat.soft)Fermi gasQuantum Physics (quant-ph)QuantumOther Condensed Matter (cond-mat.other)
researchProduct

Coherent and incoherent spectral broadening in a photonic crystal fiber.

2007

The coherence of the spectral broadening process is the key requisite for the application of supercontinua in frequency combs. We investigate the coherence of two subsequent supercontinuum pulses created in a photonic crystal fiber pumped by a femtosecond laser. We measure Young interference fringes from a Michelson-type interferometer at different wavelengths of the output spectrum and analyze their dependence on pump intensity and polarization. The visibility of these fringes is a direct measure of the coherence of the spectral broadening processes.

PhysicsOptical fiberbusiness.industryPhysics::OpticsLaserAtomic and Molecular Physics and Opticslaw.inventionSupercontinuumCoherence lengthInterferometryOpticslawOptoelectronicsbusinessPhotonic-crystal fiberDoppler broadeningPhotonic crystalOptics letters
researchProduct

Quantum phases in a resonantly-interacting Bose-Fermi mixture

2005

Condensed Matter::Quantum Gases
researchProduct