0000000000331959
AUTHOR
Bichu Bhaskar
The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source
Abstract The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4–800 keV is reported. The experiments have revealed the existence of a hump at 150–300 keV energy, containing up to 15% of the lost electrons and carrying up to 30% of the measured energy losses. The mean energy of the hump is independent of the microwave power, frequency and neutral gas pressure but increases with the magnetic field strength, most importantly with the value of the minimum-B field. Experiments in pulsed operation mode have indicated the presence of the hump only when microwave power is applied, confirming that the origi…
Effects of magnetic configuration on hot electrons in a minimum-B ECR plasma
International audience; To investigate the hot electron population and the appearance of kinetic instabilities in highly charged electron cyclotron resonance ion source (ECRIS), the axially emitted bremsstrahlung spectra and microwave bursts emitted from ECRIS plasma were synchronously measured on SECRAL-II (Superconducting ECR ion source with Advanced design in Lanzhou No. II) ion source with various magnetic field configurations. The experimental results show that when the ratio of the minimum field to the resonance field (i.e. Bmin/Becr ) is less than ~0.8, the bremsstrahlung spectral temperature Ts increases linearly with the Bmin/Becr –ratio when the injection, extraction and radial mi…
Effects of magnetic configuration on hot electrons in a minimum-B ECR plasma
To investigate the hot electron population and the appearance of kinetic instabilities in highly charged electron cyclotron resonance ion source (ECRIS), the axially emitted bremsstrahlung spectra and microwave bursts emitted from ECRIS plasma were synchronously measured on SECRAL-II (Superconducting ECR ion source with Advanced design in Lanzhou No. II) ion source with various magnetic field configurations. The experimental results show that when the ratio of the minimum field to the resonance field (i.e. Bmin/Becr) is less than ~0.8, the bremsstrahlung spectral temperature Ts increases linearly with the Bmin/Becr–ratio when the injection, extraction and radial mirror fields are kept const…