0000000000332057
AUTHOR
Ravindra N. Bhatt
Monte Carlo study of the order-parameter distribution in the four-dimensional Ising spin glass
We investigate the order-parameter distribution P(q) of the Ising spin glass with nearest-neighbor interactions in four dimensions using Monte Carlo simulations on lattices of linear dimension up to L=6. We find that, below the transition temperature ${\mathit{T}}_{\mathit{c}}$, the weight at small q seems to saturate to a nonzero value as the size increases, similar to the infinite-range Sherrington-Kirkpatrick model. We discuss our results in the light of recent theoretical predictions for the nature of the spin-glass phase.
The four dimensional Ising spin glass: A Monte Carlo study (invited)
We describe results of Monte Carlo simulation studies on the Ising spin glass in four dimensions on a hypercubic lattice with nearest neighbor bonds. Studies of the equilibrium static properties show that the system undergoes a genuine phase transition to an ordered spin glass phase. Critical dynamical behavior is analyzed to obtain the dynamic exponent. Finally, we describe results on the spin glass phase, in particular the finite size scaling of the order parameter distribution function, and compare it with existing models of the spin glass phase, namely the droplet model and the Parisi solution for the low temperature phase of the infinite range spin glass.