0000000000334808
AUTHOR
Christiane Martin
Annihilators of tensor density modules
Abstract We describe the two-sided ideals in the universal enveloping algebras of the Lie algebras of vector fields on the line and the circle which annihilate the tensor density modules. Both of these Lie algebras contain the projective subalgebra, a copy of sl 2 . The restrictions of the tensor density modules to this subalgebra are duals of Verma modules (of sl 2 ) for Vec ( R ) and principal series modules (of sl 2 ) for Vec ( S 1 ) . Thus our results are related to the well-known theorem of Duflo describing the annihilating ideals of Verma modules of reductive Lie algebras. We find that, in general, the annihilator of a tensor density module of Vec ( R ) or Vec ( S 1 ) is generated by …
Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac
We consider a class of indecomposable modules over the Virasoro Lie algebra that we call bounded admissible modules. We get results concerning the center and the dimensions of the weight spaces. We prove that these modules always contain a submodule with one-dimensional weight spaces. From this follows the proof of a conjecture of V. Kac concerning the classification of simple admissible modules.
Mécanique et comportements des milieux continus : tome 1 Concepts généraux
Cet ouvrage de Mécanique des milieux continus a pour but essentiel de vouloir rendre accessibles et opérationnels pour tout public (étudiants, chercheurs et ingénieurs), les notions et les outils nécessaires à une construction des modèles de milieux continus et de leurs lois de comportement. Tous les développements sont très détaillés afin de ne laisser aucune zone d'ombre quant à l'obtention des résultats mais également pour permettre au lecteur l'apprentissage et l'acquisition de techniques de calculs.
The Bohm-Aharonov effect: A seven-dimensional structural group
We realize a nonfaithful representation of a seven-dimensional Lie algebra, the extension of which to its universal enveloping algebra contains most of the observables of the scattering Aharonov-Bohm effect, as essentially self-adjoint operators: the scattering Hamiltonian, the total and kinetic angular momenta, the positions and the kinetic momenta. By restriction, we obtain the model introduced in Lett. Math. Phys.1 (1976), 155–163.