0000000000334922

AUTHOR

Ignacio Asensi Tortajada

ATLAS technical coordination expert system

When planning an intervention on a complex experiment like ATLAS, the detailed knowledge of the system under intervention and of the interconnection with all the other systems is mandatory. In order to improve the understanding of the parties involved in an intervention, a rule-based expert system has been developed. On the one hand this helps to recognise dependencies that are not always evident and on the other hand it facilitates communication between experts with different backgrounds by translating between vocabularies of specific domains. To simulate an event this tool combines information from different areas such as detector control (DCS) and safety (DSS) systems, gas, cooling, vent…

research product

Design and development of safety and control systems in ATLAS

El gran colisionador de hadrones, o LHC, es el acelerador de partículas más grande y potente del mundo. Ha sido construido por el CERN, la Organización Europea para la Investigación Nuclear, entre 1998 y 2008 en Ginebra, Suiza. Sucesivas mejoras en el LHC supondrán a partir de mediados del 2027 un incremento de la luminosidad, cuando pasará a llamarse High Luminosity LHC (HL-LHC). Esta tesis se divide en dos partes, por una parte la seguridad y operación de la infraestructura y por otra los sistemas de control y toma de datos. La primera parte de la tesis se dedica a la seguridad y operación de la infraestructura. Después de más de 10 años de funcionamiento, el riesgo de posibles fallos en …

research product

Update on the TowerJazz CMOS DMAPS development for the ATLAS ITk

The upgrade of the ATLAS tracking detector for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. For the de- velopment of depleted CMOS sensors for ATLAS we combined small electrodes with minimal capacitance and advanced processing for fully depleted active sensor volume to achieve radiation hard CMOS sensors in line with ATLAS ITk specifications. Based on initial studies on the prototype sensor “TowerJazz Investigator” we have now developed, produced and tested a first full-size depleted CMOS sensor based on the 180nm TowerJazz imag- ing process, the so-called “MALTA” sensor. The sensor combines special low-noise…

research product

Scalable manufacturing of fibrous nanocomposites for multifunctional liquid sensing

This research is supported by the Advanced Manufacturing Program (No. 1927623) from the National Science Foundation and by the McIntire-Stennis Cooperative Forestry Research Program (No. 1020630) from the USDA National Institute of Food and Agriculture. The authors also thank WestRock Paper Company for donated the wood pulp used in this research. Open access funding is enabled and organized by CERN. Cellulose-based paper electronics is an attractive technology to meet the growing demands for naturally abundant, biocompatible, biodegradable, flexible, inexpensive, lightweight and highly miniaturizable sensory materials. The price reduction of industrial carbon nanotube (CNT) grades offers op…

research product

MALTA: a CMOS pixel sensor with asynchronous readout for the ATLAS High-Luminosity upgrade

Radiation hard silicon sensors are required for the upgrade of the ATLAS tracking detector for the High- Luminosity Large Hadron Collider (HL-LHC) at CERN. A process modification in a standard 0.18 μm CMOS imaging technology combines small, low-capacitance electrodes (∼2 fF for the sensor) with a fully depleted active sensor volume. This results in a radiation hardness promising to meet the requirements of the ATLAS ITk outer pixel layers (1.5 × 1015 neq /cm2 ), and allows to achieve a high signal-to-noise ratio and fast signal response, as required by the HL-LHC 25 ns bunch crossing structure. The radiation hardness of the charge collection to Non-Ionizing Energy Loss (NIEL) has been previ…

research product