0000000000335331

AUTHOR

Mostafa Mbekhta

Operators intertwining with isometries and Brownian parts of 2-isometries

Abstract For two operators A and T ( A ≥ 0 ) on a Hilbert space H satisfying T ⁎ A T = A and the A-regularity condition A T = A 1 / 2 T A 1 / 2 we study the subspace N ( A − A 2 ) in connection with N ( A T − T A ) , for T belonging to different classes. Our results generalize those due to C. Kubrusly concerning the case when T is a contraction and A = S T is the asymptotic limit of T. Also, the particular case of a 2-isometry in the sense of S. Richter as well as J. Agler and M. Stankus is considered. For such operators, under the same regularity condition we completely describe the reducing Brownian unitary and isometric parts, as well as the invariant Brownian isometric part. Some exampl…

research product

Partial isometries and the conjecture of C.K. Fong and S.K. Tsui

Abstract We investigate some bounded linear operators T on a Hilbert space which satisfy the condition | T | ≤ | Re T | . We describe the maximum invariant subspace for a contraction T on which T is a partial isometry to obtain that, in certain cases, the above condition ensures that T is self-adjoint. In other words we show that the Fong–Tsui conjecture holds for partial isometries, contractive quasi-isometries, or 2-quasi-isometries, and Brownian isometries of positive covariance, or even for a more general class of operators.

research product

Generalized inverses and similarity to partial isometries

Abstract We obtain some results related to the problems of Badea and Mbekhta (2005) [1] concerning the similarity to partial isometries using the generalized inverses. Especially, we involve the Moore–Penrose inverses. Also a characterization for such a similarity is given in the terms of dilations similar to unitary operators, which leads to a new criterion for the similarity to an isometry and to a quasinormal partial isometry.

research product

Quasi-isometries associated to A-contractions

Abstract Given two operators A and T ( A ≥ 0 , ‖ A ‖ = 1 ) on a Hilbert space H satisfying T ⁎ A T ≤ A , we study the maximum subspace of H which reduces M = A 1 / 2 T to a quasi-isometry, that is on which the equality M ⁎ M = M ⁎ 2 M 2 holds. In some cases, this subspace coincides with the maximum subspace which reduces M to a normal partial isometry, for example when A = T T ⁎ , and in particular if T ⁎ is a cohyponormal contraction. In this case the corresponding subspace can be completely described in terms of asymptotic limit of the contraction T. When M is quasinormal and M ⁎ M = A then the former above quoted subspace reduces to the kernel of A − A 2 . The case of an arbitrary contra…

research product