0000000000335464
AUTHOR
Eduard Feireisl
Convergence of a finite volume scheme for the compressible Navier–Stokes system
We study convergence of a finite volume scheme for the compressible (barotropic) Navier–Stokes system. First we prove the energy stability and consistency of the scheme and show that the numerical solutions generate a dissipative measure-valued solution of the system. Then by the dissipative measure-valued-strong uniqueness principle, we conclude the convergence of the numerical solution to the strong solution as long as the latter exists. Numerical experiments for standard benchmark tests support our theoretical results.
Penalization method for the Navier–Stokes–Fourier system
We apply the method of penalization to the Dirichlet problem for the Navier–Stokes–Fourier system governing the motion of a general viscous compressible fluid confined to a bounded Lipschitz domain. The physical domain is embedded into a large cube on which the periodic boundary conditions are imposed. The original boundary conditions are enforced through a singular friction term in the momentum equation and a heat source/sink term in the internal energy balance. The solutions of the penalized problem are shown to converge to the solution of the limit problem. In particular, we extend the available existence theory to domains with rough (Lipschitz) boundary. Numerical experiments are perfor…
On the convergence of a finite volume method for the Navier–Stokes–Fourier system
Abstract The goal of the paper is to study the convergence of finite volume approximations of the Navier–Stokes–Fourier system describing the motion of compressible, viscous and heat-conducting fluids. The numerical flux uses upwinding with an additional numerical diffusion of order $\mathcal O(h^{ \varepsilon +1})$, $0<\varepsilon <1$. The approximate solutions are piecewise constant functions with respect to the underlying polygonal mesh. We show that the numerical solutions converge strongly to the classical solution as long as the latter exists. On the other hand, any uniformly bounded sequence of numerical solutions converges unconditionally to the classical solution of t…
Computing oscillatory solutions of the Euler system via 𝒦-convergence
We develop a method to compute effectively the Young measures associated to sequences of numerical solutions of the compressible Euler system. Our approach is based on the concept of [Formula: see text]-convergence adapted to sequences of parameterized measures. The convergence is strong in space and time (a.e. pointwise or in certain [Formula: see text] spaces) whereas the measures converge narrowly or in the Wasserstein distance to the corresponding limit.
𝒦-convergence as a new tool in numerical analysis
Abstract We adapt the concept of $\mathscr{K}$-convergence of Young measures to the sequences of approximate solutions resulting from numerical schemes. We obtain new results on pointwise convergence of numerical solutions in the case when solutions of the limit continuous problem possess minimal regularity. We apply the abstract theory to a finite volume method for the isentropic Euler system describing the motion of a compressible inviscid fluid. The result can be seen as a nonlinear version of the fundamental Lax equivalence theorem.