0000000000335713
AUTHOR
Jean-paul Itié
Observation of the Cinnabar Phase in ZnSe at High Pressure
In this paper we describe the results of an energy dispersive X-ray diffraction experiment carried out in the ZnSe 1 m x Te x alloy and pure ZnSe under high pressure. In the downstroke the cinnabar phase is observed between the rocksalt and the zincblende phases. The analysis of the whole series of compositions ( x =0, 0.05, 0.1 and 0.2) enables us to establish its lattice parameters in ZnSe ( a =3.785 + and c =8.844 + at 10.5 GPa). The X-ray diffraction pattern simulation suggests that the internal parameters u and v are close to 0.5, indicating that the cinnabar phase in ZnSe is similar to that observed in GaAs and ZnTe. The cinnabar's stability range decreases as the Te content is reduce…
Tetrahedral versus octahedral Mn site coordination in wurtzite and rocksalt Zn1−xMnxO investigated by means of XAS experiments under high pressure
Abstract We present the results of x-ray absorption measurements carried out in Zn 1− x Mn x O thin films under high pressure. The Mn environment remains essentially the same for nominal Mn concentrations given by x = 0.05 , 0.1, 0.15 and 0.25. Both the XANES (X-ray Absorption Near Edge Structure) and EXAFS (Extended X-ray Absorption Fine Structure) indicate that Mn occupies the Zn site, being surrounded by four oxygen atoms at 2.02±0.01 A. The substitutional hypothesis is reinforced by comparing the differences between the ambient (wurtzite) and high pressure (rocksalt) spectra, which correspond to tetrahedral and octahedral Mn environments.
Cinnabar phase in ZnSe at high pressure
We have performed an energy-dispersive x-ray-diffraction experiment on ${\mathrm{ZnSe}}_{1\ensuremath{-}x}{\mathrm{Te}}_{x}$ alloys under high pressure with $x=0,$ 0.05, 0.1, and 0.2. In the downstroke a hexagonal phase appears. We suggest that this phase is cinnabar, whose stability range decreases as the Te content is reduced. The analysis of the whole series of compositions enables us to establish its lattice parameters in ZnSe $(a=3.785\AA{}$ and $c=8.844\AA{}$ at 10.5 GPa). The extinction of some diffraction peaks also suggests that the internal parameters u and $v$ are close to 0.5, indicating that the cinnabar phase in ZnSe is similar to that observed in GaAs and ZnTe.
Structural evolution of theCuGaO2delafossite under high pressure
We have performed pseudopotential calculations and x-ray-diffraction and x-ray-absorption measurements on the ${\mathrm{CuGaO}}_{2}$ delafossite under high pressure. We have completely characterized the structural behavior of the low pressure phase. We have found out that the a axis is more compressible than the c axis, and as a consequence the oxygen octahedra defined by the gallium environment tend to become more regular under high pressure. We have determined the internal parameter describing the oxygen position inside the unit cell, and seen that it is nearly constant when pressure is applied. We have observed an irreversible phase transition affecting the copper environment but not the…
Local disorder studied inSrTiO3at low temperature by EXAFS spectroscopy
The temperature dependence of the local distortions in ${\mathrm{SrTiO}}_{3}$ has been studied by EXAFS spectroscopy at the titanium K edge (4982 eV). The oxygen-ion Debye-Waller factor ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ has been determined from 4.5 to 240 K. The antiferrodistortive transition at 105 K is evidenced by a step in this Debye-Waller factor. At about 31 K, a maximum of ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ is detected and the EXAFS oscillations due to the first oxygen shell increase. This is the signature of a maximum disorder in the lattice vibrations in this temperature range. A quasiharmonic model with a sinusoidal modulation of the Ti-O distance cannot account for t…