0000000000335716
AUTHOR
Alexander N. Korotkov
Coulomb blockade thermometry
One dimensional arrays of normal metal tunnel junctions have been found to exhibit properties which are very suitable for primary and secondary thermometry in a lithographically adjustable temperature range which extends over about two decades. The thermometer is remarkably insensitive to nonuniformities in the actual pattern and to even strong magnetic fields. We also discuss the behaviour of this device at very low temperatures where the hot electron effect due to poor electron phonon coupling ultimately takes over and at very high temperatures where the finite tunnel barrier effects appear. Short arrays, and especially single tunnel junctions show interesting deviations from the universa…
One dimensional arrays and solitary tunnel junctions in the weak coulomb blockade regime: CBT thermometry
In this article we review the use of the tunnel junction arrays for primary thermometry. In addition to our basic experimental and theoretical results we stress the insensitivity of this method to the fluctuating background charges, to nonidealities in the array and to magnetic field. Important new results of this article are the low temperature corrections to the half width and depth of the measured conductance dip beyond the linear approximation. We also point ou that short arrays, single tunnel junctions in particular, show interesting deviations from the universal behaviour of the long arrays.
Arrays of normal metal tunnel junctions in weak Coulomb blockade regime
Universal features of I–V characteristics of one‐dimensional arrays of normal metal tunnel junctions have been tested against inhomogenities in the junction parameters, number of junctions in the array, and magnetic field. We find that the differential conductance versus bias voltage obeys the analytic form to within 1% if the fabrication errors are smaller than 10% in junction areas, and if the array has more than ten junctions. Furthermore, the universal relation is insensitive to magnetic field at least up to 8 T.
Observation of thermally excited charge transport modes in a superconducting single-electron transistor
Experiments on a superconducting single-electron transistor are reported. A new structure in the current-voltage characteristics at subgap voltages was observed when temperature was not too low as compared to the superconducting transition temperature Tc of the sample. The strength of the anomalies increases exponentially with temperature. The dominating features arise from matching of singularities in the density of states on two sides of a tunnel junction, and from the Josephson-quasiparticle cycle. Thermal excitations are essential for the former process, and they also make the latter process possible at low voltages.
Resonant Tunneling through a Macroscopic Charge State in a Superconducting Single Electron Transistor
We predict theoretically and observe in experiment that the differential conductance of a superconducting single electron transistor exhibits a peak which is a complete analog, in a macroscopic system, of a standard resonant tunneling peak associated with tunneling through a single quantum state. In particular, in a symmetric transistor, the peak height is universal and equal to ${e}^{2}/2\ensuremath{\pi}\ensuremath{\Elzxh}$. Away from the resonance we clearly observe the cotunneling current which, in contrast to the normal-metal transistor, varies linearly with the bias voltage.