0000000000335822
AUTHOR
S. Kämmerer
Phase Diagrams of Alloys and Adsorbed Monolayers: Some Recent Results
We discuss some recent work done on the calculation of phase diagrams of models of binary alloys and adsorbed monolayers. For the nearest-neighbor Ising antiferromagnet on the fcc lattice (model for the Cu-Au system) we study a rather large lattice of 4 x 643 spins. This is necessary since the inherent frustration of the lattice induces a very small interfacial tension between ordered domains. We find no indications for the suggested L′ phase, and locate the triple point at a nonzero temperature. There is some numerical evidence that it might in fact be a multicritical point. We then discuss the extension of lattice gas models to “elastic lattice gases” (ELGs) which include also translation…
Nearest-neighbor Ising antiferromagnet on the fcc lattice: Evidence for multicritical behavior.
The phase behavior of the Ising model with nearest-neighbor antiferromagnetic interactions on the fcc lattice in a homogeneous magnetic field is studied by means of large-scale Monte Carlo simulations. In accordance with the most recent of the previous investigations, but with significantly higher accuracy, it is found that the ``triple'' point at which the disordered phase coexists with both the AB phase as well as with the ${\mathit{A}}_{3}$B phase (corresponding to the model's lattice gas interpretation as a binary alloy ${\mathit{A}}_{\mathit{xB}1\mathrm{\ensuremath{-}}\mathit{x}}$ such as ${\mathrm{Cu}}_{\mathit{x}}$${\mathrm{Au}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$) occurs at a nonz…