0000000000336174
AUTHOR
D. Schwander
CONDENSATION OF REFRACTORY METALS IN ASYMPTOTIC GIANT BRANCH AND OTHER STELLAR ENVIRONMENTS
The condensation of material from a gas of solar composition has been extensively studied, but less so condensation in the environment of evolved stars, which has been mainly restricted to major compounds and some specific element groups such as the Rare Earth elements. Also of interest, however, are refractory metals like Mo, Ru, Os, W, Ir, and Pt, which may condense to form refractory metal nuggets (RMNs) like the ones that have been found in association with presolar graphite. We have performed calculations describing the condensation of these elements in the outflows of s-process enriched AGB stars as well as from gas enriched in r-process products. While in carbon-rich environments (C …
Synthesis of refractory metal nuggets and constraints on the thermal histories of nugget-bearing Ca, Al-rich inclusions
Tiny refractory metal nuggets are mainly observed inside Ca, Al-rich inclusions (CAIs) from chondritic meteorites and are commonly assumed to be condensates from a solar composition gas. However, recent detailed studies of metal nugget compositions and their comparison with predictions from condensation show that the observed abundance patterns are extremely difficult to achieve in this way. As a test for the proposed alternative, precipitation from a silicate liquid, we conducted melting experiments, in which nine different refractory metals (nugget components) were equilibrated with each other along with a CAI-like liquid at reducing conditions. When quenched, minerals similar to those in…
Formation of refractory metal nuggets and their link to the history of CAIs
Abstract Ca, Al-rich inclusions (CAIs) often contain numerous refractory metal nuggets (RMNs), consisting of elements like Os, Ir, Mo, Pt and Ru. The nuggets are usually thought to have formed by equilibrium condensation from a gas of solar composition, simultaneously with or prior to oxide and silicate minerals. However, the exact mechanisms responsible for their extremely variable compositions, small sizes and associations with CAI minerals remain puzzling. Expanding on previous work on chemically separated RMNs, we have studied a large number of RMNs within their host CAIs from three different meteorite types, i.e., the highly primitive chondrite Acfer 094 (C2-ungrouped), Allende (CV3 ox…
Composition and clues to the origin of refractory metal nuggets extracted from chondritic meteorites
Refractory metal nuggets (RMNs) contain elements, such as Os, Ir, Mo, and Ru, which are predicted to condense from a cooling gas of solar composition simultaneously with CAI-minerals. Berg et al. (2009) identified a large number of RMNs in acid-resistant residues of the Murchison meteorite and suggested that they are pristine condensates. In extending the work of these authors, we have improved the chemical extraction process to enrich the concentration of RMNs in the residue sample and prepared three additional RMN-rich residues from the chondritic meteorites Murchison, Allende, and Leoville. The results show that, while their origin is clearly solar, the compositions in detail of RMNs fro…