Predicting effective aquaculture in subtropical waters: A dynamic energy budget model for the green lipped mussel, Perna viridis
Abstract The green lipped mussel, Perna viridis, is an important aquaculture species throughout the Indo-Pacific region where production is often impacted by environmental degradation. To predict the impacts and mitigate against environmental problems due to various kinds of anthropogenic pollution, such as heavy metals and eutrophication, on P. viridis aquaculture a Dynamic Energy Budget (DEB) model was constructed. By integrating species-specific parameters and regional-specific environmental data the DEB model determined how the life history traits of P. viridis respond to changing environmental conditions. Using various levels of basal maintenance costs and food availability to elucidat…
Integrating mechanistic models and climate change projections to predict invasion of the mussel, Mytilopsis sallei, along the southern China coast
Species invasion is an important cause of global biodiversity decline and is often mediated by shifts in environmental conditions such as climate change. To investigate this relationship, a mechanistic Dynamic Energy Budget model (DEB) approach was used to predict how climate change may affect spread of the invasive mussel Mytilopsis sallei, by predicting variation in the total reproductive output of the mussel under different scenarios. To achieve this, the DEB model was forced with present-day satellite data of sea surface temperature (SST) and chlorophyll-a concentration (Chl-a), and SST under two warming RCP scenarios and decreasing current Chl-a levels, to predict future responses. Und…
Combined effects of thermal conditions and food availability on thermal tolerance of the marine bivalve, Perna viridis
Abstract Organisms can mitigate the effects of long term variation in environmental conditions through acclimation, which involves changes in various physiological responses. To elucidate the possible effects of temperature and food concentrations on acclimation capacity, physiological responses of the mussel, Perna viridis, were measured after individuals were held for six weeks under varying temperatures and food availability. Warm-acclimated mussels experiencing higher food levels had significantly greater upper thermal limits than those maintained on lower food levels. In contrast, the upper thermal limits of cold-acclimated mussels were not affected by food levels. For warm-acclimated …