Parabolic equations with nonlinear singularities
Abstract We show the existence of positive solutions u ∈ L 2 ( 0 , T ; H 0 1 ( Ω ) ) for nonlinear parabolic problems with singular lower order terms of the asymptote-type. More precisely, we shall consider both semilinear problems whose model is { u t − Δ u + u 1 − u = f ( x , t ) in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , and quasilinear problems having natural growth with respect to the gradient, whose model is { u t − Δ u + ∣ ∇ u ∣ 2 u γ = f ( x , t ) in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , with γ > 0 . Moreover, we prove a comparison principle and, as an application, we study the asymptotic behav…
Nonlinear Diffusion in Transparent Media
Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.
A generalized porous medium equation related to some singular quasilinear problems
Abstract In this paper we study the existence and nonexistence of solutions for a Dirichlet boundary value problem whose model is { − ∑ m = 1 ∞ a m Δ u m = f in Ω u = 0 on ∂ Ω , where Ω is a bounded domain of R N , a m is a sequence of nonnegative real numbers, and f is in L q ( Ω ) , q > N 2 .
Nonlinear diffusion in transparent media: the resolvent equation
Abstract We consider the partial differential equation u - f = div ( u m ∇ u | ∇ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.
A DUALITY APPROACH TO THE FRACTIONAL LAPLACIAN WITH MEASURE DATA
We describe a duality method to prove both existence and uniqueness of solutions to nonlocal problems like $$(-\Delta)^s v = \mu \quad \text{in } \mathbb{R}^N,$$ ¶ with vanishing conditions at infinity. Here $\mu$ is a bounded Radon measure whose support is compactly contained in $\mathbb{R}^N$, $N\geq2$, and $-(\Delta)^s$ is the fractional Laplace operator of order $s\in (1/2,1)$.
Large solutions for nonlinear parabolic equations without absorption terms
In this paper we give a suitable notion of entropy solution of parabolic $p-$laplacian type equations with $1\leq p<2$ which blows up at the boundary of the domain. We prove existence and uniqueness of this type of solutions when the initial data is locally integrable (for $1<p<2$) or integrable (for $p=1$; i.e the Total Variation Flow case).
Quasilinear elliptic equations with singular quadratic growth terms
In this paper, we deal with positive solutions for singular quasilinear problems whose model is [Formula: see text] where Ω is a bounded open set of ℝN, g ≥ 0 is a function in some Lebesgue space, and γ > 0. We prove both existence and nonexistence of solutions depending on the value of γ and on the size of g.
Elliptic equations having a singular quadratic gradient term and a changing sign datum
In this paper we study a singular elliptic problem whose model is \begin{eqnarray*} - \Delta u= \frac{|\nabla u|^2}{|u|^\theta}+f(x), in \Omega\\ u = 0, on \partial \Omega; \end{eqnarray*} where $\theta\in (0,1)$ and $f \in L^m (\Omega)$, with $m\geq \frac{N}{2}$. We do not assume any sign condition on the lower order term, nor assume the datum $f$ has a constant sign. We carefully define the meaning of solution to this problem giving sense to the gradient term where $u=0$, and prove the existence of such a solution. We also discuss related questions as the existence of solutions when the datum $f$ is less regular or the boundedness of the solutions when the datum $f \in L^m (\Omega)$ with …