0000000000336578

AUTHOR

Michele Madonna

Deregulation of TLR4 signaling pathway characterizes Bicuspid Aortic valve syndrome

AbstractBicuspid aortic valve (BAV) disease is recognized to be a syndrome with a complex and multifaceted pathophysiology. Its progression is modulated by diverse evolutionary conserved pathways, such as Notch-1 pathway. Emerging evidence is also highlighting the key role of TLR4 signaling pathway in the aortic valve pathologies and their related complications, such as sporadic ascending aorta aneurysms (AAA). Consistent with these observations, we aimed to evaluate the role of TLR4 pathway in both BAV disease and its common complication, such as AAA. To this aim, 70 subjects with BAV (M/F 50/20; mean age: 58.8 ± 14.8 years) and 70 subjects with tricuspid aortic valve (TAV) (M/F 35/35; mea…

research product

Serum BPIFB4 levels classify health status in long-living individuals

Background People that reach extreme ages (Long-Living Individuals, LLIs) are object of intense investigation for increase/decrease of genetic variant frequencies, genetic methylation levels, protein abundance in serum and tissues. The aim of these studies is the discovery of the mechanisms behind LLIs extreme longevity and the identification of markers of well-being. We have recently associated a BPIFB4 haplotype (LAV) with exceptional longevity under a homozygous genetic model, and identified that CD34+ of LLIs subjects express higher BPIFB4 transcript as compared to CD34+ of control population. It would be of interest to correlate serum BPIFB4 protein levels with exceptional longevity an…

research product