0000000000336701

AUTHOR

Susanna Repo

The Major Conformational IgE-binding Epitopes of Hevein (Hev b6.02) Are Identified by a Novel Chimera-based Allergen Epitope Mapping Strategy

A novel approach to localize and reconstruct conformational IgE-binding epitope regions of hevein (Hev b6.02), a major natural rubber latex allergen, is described. An antimicrobial protein (AMP) from the amaranth Amaranthus caudatus was used as an immunologically non-IgE-binding adaptor molecule to which terminal or central parts of hevein were fused. Hevein and AMP share a structurally identical core region but have different N-terminal and C-terminal regions. Only 1 of 16 hevein-allergic patients showed weak IgE binding to purified native or recombinant AMP. Chimeric AMP with the hevein N terminus was recognized by IgE from 14 (88%) patients, and chimeric AMP with the hevein C terminus wa…

research product

Construction of hevein (Hev b 6.02) with reduced allergenicity for immunotherapy of latex allergy by comutation of six amino acid residues on the conformational IgE epitopes.

Abstract Recently we have established that IgE Abs bind to conformational epitopes in the N- and C-terminal regions of the major natural rubber latex allergen, hevein (Hev b 6.02). To identify the critical amino acid residues that interact with IgE, the hevein sequence was scanned by using site-specific mutations. Twenty-nine hevein mutants were designed and produced by a baculovirus expression system in insect cells and tested by IgE inhibition-ELISA using sera from 26 latex allergic patients. Six potential IgE-interacting residues of hevein (Arg5, Lys10, Glu29, Tyr30, His35, and Gln38) were identified and characterized further in detail. Based on these six residues, two triple mutants (HΔ…

research product

Binding Properties of HABA-Type Azo Derivatives to Avidin and Avidin-Related Protein 4

Summary The chicken genome encodes several biotin-binding proteins, including avidin and avidin-related protein 4 (AVR4). In addition to D -biotin, avidin binds an azo dye compound, 4-hydroxyazobenzene-2-carboxylic acid (HABA), but the HABA-binding properties of AVR4 are not yet known. Differential scanning calorimetry, UV/visible spectroscopy, and molecular modeling were used to analyze the binding of 15 azo molecules to avidin and AVR4. Significant differences are seen in azo compound preferences for the two proteins, emphasizing the importance of the loop between strands β3 and β4 for azo ligand recognition; information on these loops is provided by the high-resolution (1.5 A) X-ray stru…

research product