0000000000336730

AUTHOR

Anastassios Vladikas

showing 6 related works from this author

Towards N=1 Super-Yang-Mills on the Lattice

1997

We consider the lattice regularization of N=1 supersymmetric Yang--Mills theory with Wilson fermions. This formulation breaks supersymmetry at any finite lattice spacing; we discuss how Ward identities can be used to define a supersymmetric continuum limit, which coincides with the point where the gluino becomes massless. As a first step towards the understanding of the zero gluino-mass limit, we present results on the quenched low-lying spectrum of SU(2) N=1 Super-Yang--Mills, at $\beta=2.6$ on a $V=16^3 \times 32$ lattice, in the OZI approximation. Our results, in spite of the quenched and OZI approximations, are in remarkable agreement with theoretical predictions in the supersymmetric t…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsGluinoHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)FísicaFOS: Physical sciencesYang–Mills existence and mass gapParticle Physics - LatticeFermionSupersymmetryMassless particleHigh Energy Physics - PhenomenologyHigh Energy Physics::TheoryHigh Energy Physics - LatticeLattice constantHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Regularization (physics)Lattice (order)Mathematical physics
researchProduct

BK-parameter fromNf=2twisted mass lattice QCD

2011

We present an unquenched Nf=2 lattice computation of the B K parameter which controls K0-K0 oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wi ...

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::LatticeLattice field theoryHadronElementary particleLattice QCD01 natural sciencesRenormalizationLattice gauge theoryLattice (order)0103 physical sciences010306 general physicsPhysical Review D
researchProduct

Quark masses and the chiral condensate with a non-perturbative renormalization procedure

1999

We determine the quark masses and the chiral condensate in the MSbar scheme at NNLO from Lattice QCD in the quenched approximation at beta=6.0, beta=6.2 and beta=6.4 using both the Wilson and the tree-level improved SW-Clover fermion action. We extract these quantities using the Vector and the Axial Ward Identities and non-perturbative values of the renormalization constants. We compare the results obtained with the two methods and we study the O(a) dependence of the quark masses for both actions.

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsquark masses QCD latticeHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesFísicaQuenched approximationLattice QCDFermionAtomic and Molecular Physics and OpticsAction (physics)FIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIRenormalizationHigh Energy Physics - LatticeBeta (velocity)High Energy Physics::ExperimentNon-perturbative
researchProduct

Non-Perturbative Renormalization of Lattice Four-Fermion Operators without Power Subtractions

1999

A general non-perturbative analysis of the renormalization properties of $\Delta I=3/2$ four-fermion operators in the framework of lattice regularization with Wilson fermions is presented. We discuss the non-perturbative determination of the operator renormalization constants in the lattice Regularization Independent (RI or MOM) scheme. We also discuss the determination of the finite lattice subtraction coefficients from Ward Identities. We prove that, at large external virtualities, the determination of the lattice mixing coefficients, obtained using the RI renormalization scheme, is equivalent to that based on Ward Identities, in the continuum and chiral limits. As a feasibility study of …

PhysicsPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FísicaFOS: Physical sciencesFermionRenormalizationOperator (computer programming)High Energy Physics - LatticeRegularization (physics)Lattice (order)Non-perturbativeEngineering (miscellaneous)Mathematical physics
researchProduct

Kaon mixing beyond the SM from N-f=2 tmQCD and model independent constraints from the UTA

2013

We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S = 2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of N-f = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of t…

QuarkStrange quarkParticle physicsNuclear and High Energy PhysicsPhysics beyond the Standard ModelComputationHigh Energy Physics::LatticeFOS: Physical sciencesLattice QCD01 natural sciencesRenormalizationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciences010306 general physicsPhysicsHamiltonian matrixUnitarity010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]Computer Science::Information RetrievalHigh Energy Physics - Lattice (hep-lat)FísicaLattice QCDSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard ModelBeyond the Standard Model Physics
researchProduct

Non-perturbative renormalization in kaon decays

1996

We discuss the application of the MPSTV non-perturbative method \cite{NPM} to the operators relevant to kaon decays. This enables us to reappraise the long-standing question of the $\Delta I=1/2$ rule, which involves power-divergent subtractions that cannot be evaluated in perturbation theory. We also study the mixing with dimension-six operators and discuss its implications to the chiral behaviour of the $B_K$ parameter.

RenormalizationPhysicsNuclear and High Energy PhysicsHigh Energy Physics - LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesPerturbation theoryNon-perturbativeAtomic and Molecular Physics and OpticsMixing (physics)Mathematical physics
researchProduct