0000000000336737

AUTHOR

José Vicente Romero

Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions

[EN] In this work we consider a particular randomized kinetic model for reaction-deactivation of hydrogen peroxide decomposition. We apply the Random Variable Transformation technique to obtain the first probability density function of the solution stochastic process under general conditions. From the rst probability density function, we can obtain fundamental statistical information, such as the mean and the variance of the solution, at every instant time. The transformation considered in the application of the Random Variable Transformation technique is not unique. Then, the first probability density function can take different expressions, although essentially equivalent in terms of comp…

research product

Thermal history and structure of rotating protoneutron stars with relativistic equation of state

We study the properties of general relativistic, slowly rotating, protoneutron stars. We explore the structure of rotating protoneutron stars with a wide range of the entropy per baryon, the lepton fraction and the baryonic mass in order to study the evolutionary history of protoneutron stars during the cooling epoch. We adopt the relativistic equation of state for dense matter derived within the relativistic mean field theory, which is based on the microscopic nuclear many-body framework, and checked by the experimental data of many nuclei. We provide broad information on the effect of rotation, temperature and lepton trapping of protoneutron stars with various baryonic masses. The evoluti…

research product

Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach

Due to errors in measurements and inherent variability in the quantities of interest, models based on random differential equations give more realistic results than their deterministic counterpart. The generalized polynomial chaos (gPC) is a powerful technique used to approximate the solution of these equations when the random inputs follow standard probability distributions. But in many cases these random inputs do not have a standard probability distribution. In this paper, we present a step-by-step constructive methodology to implement directly a useful version of adaptive gPC for arbitrary distributions, extending the applicability of the gPC. The paper mainly focuses on the computation…

research product

First-order linear differential equations whose data are complex random variables: Probabilistic solution and stability analysis via densities

[EN] Random initial value problems to non-homogeneous first-order linear differential equations with complex coefficients are probabilistically solved by computing the first probability density of the solution. For the sake of generality, coefficients and initial condition are assumed to be absolutely continuous complex random variables with an arbitrary joint probability density function. The probability of stability, as well as the density of the equilibrium point, are explicitly determined. The Random Variable Transformation technique is extensively utilized to conduct the overall analysis. Several examples are included to illustrate all the theoretical findings.

research product

Solving continuous models with dependent uncertainty: a computational approach

This paper presents a computational study on a quasi-Galerkin projection-based method to deal with a class of systems of random ordinary differential equations (r.o.d.e.'s) which is assumed to depend on a finite number of random variables (r.v.'s). This class of systems of r.o.d.e.'s appears in different areas, particularly in epidemiology modelling. In contrast with the other available Galerkin-based techniques, such as the generalized Polynomial Chaos, the proposed method expands the solution directly in terms of the random inputs rather than auxiliary r.v.'s. Theoretically, Galerkin projection-based methods take advantage of orthogonality with the aim of simplifying the involved computat…

research product

Solving fully randomized higher-order linear control differential equations: Application to study the dynamics of an oscillator

[EN] In this work, we consider control problems represented by a linear differential equation assuming that all the coefficients are random variables and with an additive control that is a stochastic process. Specifically, we will work with controllable problems in which the initial condition and the final target are random variables. The probability density function of the solution and the control has been calculated. The theoretical results have been applied to study, from a probabilistic standpoint, a damped oscillator.

research product

Statistical Analysis of Biological Models with Uncertainty

In this contribution relevant biological models, based on random differential equations, are studied. For the sake of generality, we assume that the initial condition and the biological model parameters are dependent random variables with arbitrary probability distributions. We present a general methodology that enables us to provide a full probabilistic description of the solution stochastic process for each stochastic model. The statistical analysis is performed through the calculation of the first probability function by applying the random variable transformation technique. From the first probability density function, we can calculate any one-dimensional moment of the solution, includin…

research product

Solving fully randomized first-order linear control systems: Application to study the dynamics of a damped oscillator with parametric noise under stochastic control

[EN] This paper is devoted to study random linear control systems where the initial condition, the final target, and the elements of matrices defining the coefficients are random variables, while the control is a stochastic process. The so-called Random Variable Transformation technique is adapted to obtain closed-form expressions of the probability density functions of the solution and of the control. The theoretical findings are applied to study the dynamics of a damped oscillator subject to parametric noise.

research product