Shallow-donor impurities in indium selenide investigated by means of far-infrared spectroscopy.
Shallow impurities in n-type indium selenide (InSe) have been investigated by means of Fourier-transform spectroscopy in the far-infrared region. Three electric dipole transitions have been identified: 1s-2${\mathit{p}}_{\ifmmode\pm\else\textpm\fi{}}$, 1s-2${\mathit{p}}_{0}$, and 1s-3${\mathit{p}}_{\ifmmode\pm\else\textpm\fi{}}$, corresponding to electrons bound to native donors and tin-, silicon-, and chlorine-related donors, whose ionization energies (17.6, 18.1, 18.8, and 19 meV, respectively) have been determined through the Guerlach-Pollmann model. That model was also used to calculate the oscillator strengths of those dipole transitions, and then to estimate the shallow-donor concentr…