0000000000337719

AUTHOR

Josep Comet

showing 10 related works from this author

A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images

2013

Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create patient specific anatomical models for surgical planning and image guided biopsies. However, manual segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calcifications, and shadow regions hinder computer aided automatic or semi-automatic prostate segmentation. In this paper, we propose a prostate segmentation approach based on building multiple mean parametric models derived from principal component analysis of shape and posterior probabilities in a multi…

MaleComputer sciencePosterior probabilityScale-space segmentationImage registrationHealth InformaticsSensitivity and SpecificityPattern Recognition AutomatedArtificial IntelligenceImage Interpretation Computer-AssistedHumansRadiology Nuclear Medicine and imagingComputer visionSegmentationUltrasonographyRadiological and Ultrasound TechnologySegmentation-based object categorizationbusiness.industryProstateProstatic NeoplasmsReproducibility of ResultsPattern recognitionImage segmentationImage EnhancementComputer Graphics and Computer-Aided DesignSpectral clusteringActive appearance modelData Interpretation StatisticalComputer Vision and Pattern RecognitionArtificial intelligencebusinessAlgorithmsMedical Image Analysis
researchProduct

Multiple Mean Models of Statistical Shape and Probability Priors for Automatic Prostate Segmentation

2011

International audience; Low contrast of the prostate gland, heterogeneous intensity distribution inside the prostate region, imaging artifacts like shadow regions, speckle and significant variations in prostate shape, size and in- ter dataset contrast in Trans Rectal Ultrasound (TRUS) images challenge computer aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose a probabilistic framework for automatic initialization and propagation of multiple mean parametric models derived from principal component analysis of shape and posterior probability information of the prostate region to segment the prostate. Unlike traditional statistical models of shape and int…

[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryPosterior probability[INFO.INFO-IM] Computer Science [cs]/Medical ImagingProbabilistic logicInitializationStatistical modelPattern recognition02 engineering and technology030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicinePrior probabilityParametric modelPrincipal component analysis[INFO.INFO-IM]Computer Science [cs]/Medical Imaging0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSegmentationArtificial intelligencebusinessMathematics
researchProduct

Weighted Likelihood Function of Multiple Statistical Parameters to Retrieve 2D TRUS-MR Slice Correspondece for Prostate Biopsy

2012

International audience; This paper presents a novel method to identify the 2D axial Magnetic Resonance (MR) slice from a pre-acquired MR prostate volume that closely corresponds to the 2D axial Transrectal Ultrasound (TRUS) slice obtained during prostate biopsy. The shape-context representations of the segmented prostate contours in both the imaging modalities are used to establish point correspondences using Bhattacharyya distance. Thereafter, Chi-square distance is used to find the prostate shape similarities between the MR slices and the TRUS slice. Normalized mutual information and correlation coefficient between the TRUS and MR slices are computed to find the information theoretic simi…

Ground truthProstate biopsySimilarity (geometry)Correlation coefficientmedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryStatistical parameter[INFO.INFO-IM] Computer Science [cs]/Medical ImagingMagnetic resonance imagingPattern recognition02 engineering and technologyImage segmentationurologic and male genital diseases030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingBhattacharyya distance020201 artificial intelligence & image processingArtificial intelligencebusinessMathematics
researchProduct

Spectral clustering of shape and probability prior models for automatic prostate segmentation.

2013

Imaging artifacts in Transrectal Ultrasound (TRUS) images and inter-patient variations in prostate shape and size challenge computer-aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose to use multiple mean parametric models derived from principal component analysis (PCA) of shape and posterior probability information to segment the prostate. In contrast to traditional statistical models of shape and intensity priors, we use posterior probability of the prostate region determined from random forest classification to build, initialize and propagate our model. Multiple mean models derived from spectral clustering of combined shape and appearance parameters…

MaleModels StatisticalComputer scienceSegmentation-based object categorizationbusiness.industryPosterior probabilityProstateScale-space segmentationReproducibility of ResultsPattern recognitionImage segmentationModels BiologicalSensitivity and SpecificitySpectral clusteringPattern Recognition AutomatedPoint distribution modelSubtraction TechniqueImage Interpretation Computer-AssistedHumansComputer visionSegmentationComputer SimulationArtificial intelligencebusinessUltrasonographyAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct

A Shape-based Statistical Method to Retrieve 2D TRUS-MR Slice Correspondence for Prostate Biopsy

2012

International audience; This paper presents a method based on shape-context and statistical measures to match interventional 2D Trans Rectal Ultrasound (TRUS) slice during prostate biopsy to a 2D Magnetic Resonance (MR) slice of a pre-acquired prostate volume. Accurate biopsy tissue sampling requires translation of the MR slice information on the TRUS guided biopsy slice. However, this translation or fusion requires the knowledge of the spatial position of the TRUS slice and this is only possible with the use of an electro-magnetic (EM) tracker attached to the TRUS probe. Since, the use of EM tracker is not common in clinical practice and 3D TRUS is not used during biopsy, we propose to per…

shape-contextProstate biopsyComputer science[INFO.INFO-IM] Computer Science [cs]/Medical Imaging030230 surgeryTranslation (geometry)[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]urologic and male genital diseasesRectal ultrasound030218 nuclear medicine & medical imagingProstate biopsy03 medical and health sciences0302 clinical medicine[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]ProstateBiopsymedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingComputer visionnormalized mutual information.normalized mutual informationmedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Magnetic resonance imagingTissue samplingmedicine.anatomical_structure2D TRUS/3D MR correspondenceArtificial intelligenceUltrasonographybusiness
researchProduct

A spline-based non-linear diffeomorphism for multimodal prostate registration.

2012

This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least…

MaleProstate biopsyProstate -- Cancer -- DiagnosisPhysics::Medical Physics[INFO.INFO-IM] Computer Science [cs]/Medical ImagingHealth InformaticsSystem of linear equationsSensitivity and Specificity030218 nuclear medicine & medical imagingPattern Recognition AutomatedPròstata -- Càncer -- Diagnòstic03 medical and health sciences0302 clinical medicineArtificial IntelligenceImage Interpretation Computer-Assistedmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingBhattacharyya distanceHumansRadiology Nuclear Medicine and imagingComputer visionThin plate splineMathematicsUltrasonographyRadiological and Ultrasound Technologymedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryProstatic NeoplasmsReproducibility of ResultsProstate -- BiopsyImage EnhancementComputer Graphics and Computer-Aided DesignMagnetic Resonance ImagingPròstata -- BiòpsiaSpline (mathematics)Nonlinear systemHausdorff distanceNonlinear DynamicsComputer Science::Computer Vision and Pattern RecognitionSubtraction TechniqueImatgeria mèdicaComputer Vision and Pattern RecognitionDiffeomorphismArtificial intelligencebusiness030217 neurology & neurosurgeryAlgorithmsImaging systems in medicineMedical image analysis
researchProduct

A Supervised Learning Framework for Automatic Prostate Segmentation in Trans Rectal Ultrasound Images

2012

International audience; Heterogeneous intensity distribution inside the prostate gland, significant variations in prostate shape, size, inter dataset contrast variations, and imaging artifacts like shadow regions and speckle in Trans Rectal Ultrasound (TRUS) images challenge computer aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose a supervised learning schema based on random forest for automatic initialization and propagation of statistical shape and appearance model. Parametric representation of the statistical model of shape and appearance is derived from principal component analysis (PCA) of the probability distribution inside the prostate and PC…

[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryComputer sciencePosterior probabilitySupervised learning[INFO.INFO-IM] Computer Science [cs]/Medical ImagingStatistical modelPattern recognition02 engineering and technology030218 nuclear medicine & medical imagingRandom forestActive appearance model03 medical and health sciences0302 clinical medicinePoint distribution model0202 electrical engineering electronic engineering information engineering[INFO.INFO-IM]Computer Science [cs]/Medical Imaging020201 artificial intelligence & image processingComputer visionSegmentationArtificial intelligencebusinessParametric statistics
researchProduct

Statistical Shape and Probability Prior Model for Automatic Prostate Segmentation

2011

International audience; Accurate prostate segmentation in Trans Rectal Ultra Sound (TRUS) images is an important step in different clinical applications. However, the development of computer aided automatic prostate segmentation in TRUS images is a challenging task due to low contrast, heterogeneous intensity distribution inside the prostate region, imaging artifacts like shadow, and speckle. Significant variations in prostate shape, size and contrast between the datasets pose further challenges to achieve an accurate segmentation. In this paper we propose to use graph cuts in a Bayesian framework for automatic initialization and propagate multiple mean parametric models derived from princi…

Markov random field[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryPosterior probability[INFO.INFO-IM] Computer Science [cs]/Medical ImagingInitializationPattern recognitionImage segmentation01 natural sciences030218 nuclear medicine & medical imagingActive appearance model010104 statistics & probability03 medical and health sciences0302 clinical medicineHausdorff distanceCutParametric model[INFO.INFO-IM]Computer Science [cs]/Medical ImagingComputer visionArtificial intelligence0101 mathematicsbusinessMathematics
researchProduct

Joint Probability of Shape and Image Similarities to Retrieve 2D TRUS-MR Slice Correspondence for Prostate Biopsy

2012

International audience; This paper presents a novel method to identify the 2D axial Magnetic Resonance (MR) slice from a pre-acquired MR prostate volume that closely corresponds to the 2D axial Transrectal Ultrasound (TRUS) slice obtained during prostate biopsy. The method combines both shape and image intensity information. The segmented prostate contours in both the imaging modalities are described by shape-context representations and matched using the Chi-square distance. Normalized mutual information and correlation coefficient between the TRUS and MR slices are computed to find image similarities. Finally, the joint probability values comprising shape and image similarities are used in…

MaleProstate biopsyBiopsy[INFO.INFO-IM] Computer Science [cs]/Medical Imaging030230 surgeryNormalized mutual information030218 nuclear medicine & medical imagingImage (mathematics)03 medical and health sciences0302 clinical medicineJoint probability distribution[INFO.INFO-IM]Computer Science [cs]/Medical ImagingMedicineHumansComputer visionMR ProstateProbabilitymedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryUltrasoundProstatic NeoplasmsMagnetic resonance imagingImage segmentationMagnetic Resonance ImagingArtificial intelligencebusiness
researchProduct

Spectral Clustering of Shape and Probability Prior Models for Automatic Prostate Segmentation in Ultrasound Images

2012

International audience; Imaging artifacts in Transrectal Ultrasound (TRUS) images and inter-patient variations in prostate shape and size challenge computer-aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose to use multiple mean parametric models derived from principal component analysis (PCA) of shape and posterior probability information to segment the prostate. In contrast to traditional statistical models of shape and intensity priors, we use posterior probability of the prostate region determined from random forest classification to build, initialize and propagate our model. Multiple mean models derived from spectral clustering of combined shape a…

[ INFO.INFO-IM ] Computer Science [cs]/Medical Imaging[INFO.INFO-IM] Computer Science [cs]/Medical Imaging[INFO.INFO-IM]Computer Science [cs]/Medical Imaging
researchProduct