0000000000337722

AUTHOR

Christian Zerfaß

0000-0001-8960-1926

Secondary structure and dynamics study of the intrinsically disordered silica-mineralizing peptide P5S3during silicic acid condensation and silica decondensation

The silica forming repeat R5 of sil1 from Cylindrotheca fusiformis was the blueprint for the design of P5 S3 , a 50-residue peptide which can be produced in large amounts by recombinant bacterial expression. It contains 5 protein kinase A target sites and is highly cationic due to 10 lysine and 10 arginine residues. In the presence of supersaturated orthosilicic acid P5 S3 enhances silica-formation whereas it retards the dissolution of amorphous silica (SiO2 ) at globally undersaturated concentrations. The secondary structure of P5 S3 during these 2 processes was studied by circular dichroism (CD) spectroscopy, complemented by nuclear magnetic resonance (NMR) spectroscopy of the peptide in …

research product

Pleiotropic Role of Recombinant Silaffin-Like Cationic Polypeptide P5S3: Peptide-Induced Silicic Acid Stabilization, Silica Formation and Inhibition of Silica Dissolution

Silica-mineralizing organisms such as diatoms manage several aspects of silica chemistry when polymerizing monomeric silicic acid into amorphous silica. Silicic acid is undersaturated in the diatoms’ habitats and mechanisms of enrichment and prevention of uncontrolled mineralization are not well understood. Diatom-biosilica is associated with organic compounds, including polycationic, post-translationally modified peptides termed silaffins, which induce the condensation of silicic acid under supersaturated conditions. Here, we report the pleiotropic action of the designed silaffin-like peptide P5S3, which (i) stabilizes 4–8x silicic acid (in supersaturated conditions of 8.3 mm), (ii) decele…

research product

High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization.

We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, b…

research product

Cover Picture: Pleiotropic Role of Recombinant Silaffin-Like Cationic Polypeptide P5S3: Peptide-Induced Silicic Acid Stabilization, Silica Formation and Inhibition of Silica Dissolution (ChemistrySelect 1/2017)

research product