Secondary structure and dynamics study of the intrinsically disordered silica-mineralizing peptide P5S3during silicic acid condensation and silica decondensation
The silica forming repeat R5 of sil1 from Cylindrotheca fusiformis was the blueprint for the design of P5 S3 , a 50-residue peptide which can be produced in large amounts by recombinant bacterial expression. It contains 5 protein kinase A target sites and is highly cationic due to 10 lysine and 10 arginine residues. In the presence of supersaturated orthosilicic acid P5 S3 enhances silica-formation whereas it retards the dissolution of amorphous silica (SiO2 ) at globally undersaturated concentrations. The secondary structure of P5 S3 during these 2 processes was studied by circular dichroism (CD) spectroscopy, complemented by nuclear magnetic resonance (NMR) spectroscopy of the peptide in …