0000000000338049

AUTHOR

Rafael Garcia

0000-0002-1681-6229

showing 3 related works from this author

Automatic differentiation of melanoma from dysplastic nevi.

2015

International audience; Malignant melanoma causes the majority of deaths related to skin cancer. Nevertheless, it is the most treatable one, depending on its early diagnosis. The early prognosis is a challenging task for both clinicians and dermatologist, due to the characteristic similarities of melanoma with other skin lesions such as dysplastic nevi. In the past decades, several computerized lesion analysis algorithms have been proposed by the research community for detection of melanoma. These algorithms mostly focus on differentiating melanoma from benign lesions and few have considered the case of melanoma against dysplastic nevi. In this paper, we consider the most challenging task a…

Shape featuresSkin Neoplasms[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingDysplastic02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]030218 nuclear medicine & medical imagingColourPattern Recognition Automated0302 clinical medicine0202 electrical engineering electronic engineering information engineeringMelanoma[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/ImagingRadiological and Ultrasound Technology[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingMelanomaClassificationComputer Graphics and Computer-Aided DesignDermoscopy imaging3. Good healthRandom forest020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionAlgorithmsmedicine.medical_specialtyAutomatic differentiationFeature extractionHealth InformaticsDermoscopySensitivity and SpecificityDiagnosis Differential03 medical and health sciencesLesion analysisMachine learningImage Interpretation Computer-Assistedmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumansRadiology Nuclear Medicine and imagingTextureneoplasmsbusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]medicine.diseaseDermatologySupport vector machineBag-of-words modelSkin cancerbusinessDysplastic Nevus SyndromeComputerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
researchProduct

Tackling the Problem of Data Imbalancing for Melanoma Classification

2016

Comunicació de congrés presentada a: 3rd International Conference on Bioimaging, BIOIMAGING 2016 - Part of 9th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2016, Roma, Italy Malignant melanoma is the most dangerous type of skin cancer, yet melanoma is the most treatable kind of cancer when diagnosed at an early stage. In this regard, Computer-Aided Diagnosis systems based on machine learning have been developed to discern melanoma lesions from benign and dysplastic nevi in dermoscopic images. Similar to a large range of real world applications encountered in machine learning, melanoma classification faces the challenge of imbalanced data, where …

medicine.medical_specialtyFeature vectorMELANOMA02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingImbalanced dataCLASSIFICATION030218 nuclear medicine & medical imaging03 medical and health sciencesDERMOSCOPY0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicineIMBALANCEDStage (cooking)Melanoma[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingbusiness.industryMelanomaCancermedicine.diseaseDermatologyData balancingFeature (computer vision)020201 artificial intelligence & image processingEnginyeria biomèdicaSkin cancerbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingBiomedical engineering
researchProduct

Classification of Melanoma Lesions Using Sparse Coded Features and Random Forests

2016

International audience; Malignant melanoma is the most dangerous type of skin cancer, yet it is the most treatable kind of cancer, conditioned by its early diagnosis which is a challenging task for clinicians and dermatologists. In this regard, CAD systems based on machine learning and image processing techniques are developed to differentiate melanoma lesions from benign and dysplastic nevi using dermoscopic images. Generally, these frameworks are composed of sequential processes: pre-processing, segmentation, and classification. This architecture faces mainly two challenges: (i) each process is complex with the need to tune a set of parameters, and is specific to a given dataset; (ii) the…

Computer scienceSparse codingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformImage processingDermoscopy02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineHistogram0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentationMelanoma[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingbusiness.industryMelanomaCancerPattern recognitionImage segmentationSparse approximationRandom forestsmedicine.diseaseClassificationRandom forest020201 artificial intelligence & image processingArtificial intelligenceSkin cancerNeural codingbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct