6533b7d9fe1ef96bd126c326

RESEARCH PRODUCT

Automatic differentiation of melanoma from dysplastic nevi.

Mojdeh RastgooRafael GarciaFranck MarzaniOlivier Morel

subject

Shape featuresSkin Neoplasms[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingDysplastic02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]030218 nuclear medicine & medical imagingColourPattern Recognition Automated0302 clinical medicine0202 electrical engineering electronic engineering information engineeringMelanoma[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/ImagingRadiological and Ultrasound Technology[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingMelanomaClassificationComputer Graphics and Computer-Aided DesignDermoscopy imaging3. Good healthRandom forest020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionAlgorithmsmedicine.medical_specialtyAutomatic differentiationFeature extractionHealth InformaticsDermoscopySensitivity and SpecificityDiagnosis Differential03 medical and health sciencesLesion analysisMachine learningImage Interpretation Computer-Assistedmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumansRadiology Nuclear Medicine and imagingTextureneoplasmsbusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]medicine.diseaseDermatologySupport vector machineBag-of-words modelSkin cancerbusinessDysplastic Nevus Syndrome

description

International audience; Malignant melanoma causes the majority of deaths related to skin cancer. Nevertheless, it is the most treatable one, depending on its early diagnosis. The early prognosis is a challenging task for both clinicians and dermatologist, due to the characteristic similarities of melanoma with other skin lesions such as dysplastic nevi. In the past decades, several computerized lesion analysis algorithms have been proposed by the research community for detection of melanoma. These algorithms mostly focus on differentiating melanoma from benign lesions and few have considered the case of melanoma against dysplastic nevi. In this paper, we consider the most challenging task and propose an automatic framework for differentiation of melanoma from dysplastic nevi. The proposed framework also considers combination and comparison of several texture features beside the well used colour and shape features based on " ABCD " clinical rule in the literature. Focusing on dermoscopy images, we evaluate the performance of the framework using two feature extraction approaches, global and local (bag of words) and three classifiers such as support vector machine, gradient boosting and random forest. Our evaluation revealed the potential of texture features and random forest as an almost independent classifier. Using texture features and random forest for differentiation of melanoma and dysplastic nevi, the framework achieved the highest sensitivity of 98% and specificity of 70%.

10.1016/j.compmedimag.2015.02.011https://pubmed.ncbi.nlm.nih.gov/25797605