0000000000338099
AUTHOR
Ronay Ak
Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing
International audience; Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This article presents an extension to the predictive model markup language (PMML) standard for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on extensible markup language (XML) and used for the representation of analytical models…
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)
International audience; This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the pred…
A Neural Network Meta-Model and its Application for Manufacturing
International audience; Manufacturing generates a vast amount of data both from operations and simulation. Extracting appropriate information from this data can provide insights to increase a manufacturer's competitive advantage through improved sustainability, productivity, and flexibility of their operations. Manufacturers, as well as other industries, have successfully applied a promising statistical learning technique, called neural networks (NNs), to extract meaningful information from large data sets, so called big data. However, the application of NN to manufacturing problems remains limited because it involves the specialized skills of a data scientist. This paper introduces an appr…