6533b7d9fe1ef96bd126c346
RESEARCH PRODUCT
Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing
Saideep NannapaneniThurston SextonDavid LechevalierSankaran MahadevanYung-tsun T. LeeAnantha NarayananRonay Aksubject
0209 industrial biotechnologyDesignComputer sciencecomputer.internet_protocol02 engineering and technologycomputer.software_genreBayesian inferenceIndustrial and Manufacturing EngineeringArticle[SPI]Engineering Sciences [physics]020901 industrial engineering & automationPMML0202 electrical engineering electronic engineering information engineeringanalyticsUncertainty quantificationMonte-Carlouncertaintycomputer.programming_languageParsingBayesian networkInformationSystems_DATABASEMANAGEMENTstandardPython (programming language)XMLComputer Science ApplicationsmanufacturingComputingMethodologies_PATTERNRECOGNITIONBayesian networksControl and Systems EngineeringSurface-RoughnessData analysisPredictive Model Markup Language020201 artificial intelligence & image processingData miningcomputerXMLdescription
International audience; Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This article presents an extension to the predictive model markup language (PMML) standard for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on extensible markup language (XML) and used for the representation of analytical models. The BN PMML representation is available in PMML v4.3 released by the Data Mining Group. We demonstrate the conversion of analytical models into the BN PMML representation, and the PMML representation of such models into analytical models, through a Python parser. The BNs obtained after parsing PMML representation can then be used to perform Bayesian inference. Finally, we illustrate the developed BN PMML schema for a welding process.
year | journal | country | edition | language |
---|---|---|---|---|
2018-10-02 |