Pseudospectrum of Reissner-Nordström black holes: Quasinormal mode instability and universality
Black hole spectroscopy is a powerful tool to probe the Kerr nature of astrophysical compact objects and their environment. The observation of multiple ringdown modes in gravitational waveforms could soon lead to high-precision gravitational spectroscopy, so it is critical to understand if the quasinormal mode spectrum is stable against perturbations. It was recently shown that the pseudospectrum can shed light on the spectral stability of black hole quasinormal modes. We study the pseudospectrum of Reissner-Nordstr\"om spacetimes and we find a spectral instability of scalar and gravitoelectric quasinormal modes in subextremal and extremal black holes, extending similar findings for the Sch…
Pseudospectrum and Black Hole Quasinormal Mode Instability
We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)] as an "infrared" effect; (ii) the instability of all overtones under small-scale ("ultraviolet") perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospec…
Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case
We study quasi-normal modes of black holes, with a focus on resonant (or quasi-normal mode) expansions, in a geometric frame based on the use of conformal compactifications together with hyperboloidal foliations of spacetime. Specifically, this work extends the previous study of Schwarzschild in this geometric approach to spherically symmetric asymptotically flat black hole spacetimes, in particular Reissner-Nordstr\"om. The discussion involves, first, the non-trivial technical developments needed to address the choice of appropriate hyperboloidal slices in the extended setting as well as the generalization of the algorithm determining the coefficients in the expansion of the solution in te…