0000000000338339

AUTHOR

Tom Wirtanen

showing 6 related works from this author

Cathodic Corrosion of Metal Electrodes—How to Prevent It in Electroorganic Synthesis

2021

The critical aspects of the corrosion of metal electrodes in cathodic reductions are covered. We discuss the involved mechanisms including alloying with alkali metals, cathodic etching in aqueous and aprotic media, and formation of metal hydrides and organometallics. Successful approaches that have been implemented to suppress cathodic corrosion are reviewed. We present several examples from electroorganic synthesis where the clever use of alloys instead of soft neat heavy metals and the application of protective cationic additives have allowed to successfully exploit these materials as cathodes. Because of the high overpotential for the hydrogen evolution reaction, such cathodes can contri…

010405 organic chemistrySide reactionchemistry.chemical_elementReviewGeneral ChemistryOverpotential010402 general chemistryElectrochemistryElectrosynthesis01 natural sciences0104 chemical sciencesCorrosionCathodic protectionMetalchemistryChemical engineeringvisual_artvisual_art.visual_art_mediumPlatinumChemical Reviews
researchProduct

Recent advances in the electrochemical reduction of substrates involving N−O Bonds

2020

Reduction (complexity)540 Chemistry and allied sciencesChemistry540 ChemieInorganic chemistrychemistry.chemical_elementGeneral ChemistryElectrochemistryNitrogenOxygen
researchProduct

Intermolecular oxidative dehydrogenative 3,3′-coupling of benzo[b]furans and benzo[b]thiophenes promoted by DDQ/H+: total synthesis of shandougenine B

2016

With an excess of a strong acid, 2,3-dichloro-5,6-dicyano-1,4-quinone (DDQ) is shown to promote metal-free intermolecular oxidative dehydrogenative (ODH) 3,3'-coupling of 2-aryl-benzo[b]furans and 2-aryl-benzo[b]thiophenes up to 92% yield as demonstrated with 9 substrates. Based on the analysis of oxidation potentials and molecular orbitals combined with EPR, NMR and UV-Vis observations, the studied reaction is initiated by a DDQ-substrate charge transfer complex and presumably proceeds via oxidation of the substrate into an electrophilic radical cation that further reacts with another molecule of a neutral substrate. The coupling reactivity can easily be predicted from the oxidation potent…

116 Chemical sciencesEFFICIENTfree radicalscoupling reactionsvapaat radikaalit010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryCoupling reactionoxidative dehydrogenationC BOND FORMATIONSCHOLL REACTIONELECTRON-TRANSFERMolecular orbitalReactivity (chemistry)luonnonaineiden synteesiDIPHOSPHINE LIGANDSta116BASIS-SETSCATALYZED STEREOSELECTIVE REACTIONS010405 organic chemistryChemistryOrganic ChemistrykytkentäreaktiotSubstrate (chemistry)Total synthesishapettava dehydroganaatiolaskennallinen kemiaCharge-transfer complex0104 chemical sciencesRadical ionsynthesis of natural productsACIDElectrophileCATION-RADICALSHETEROCYCLESOrganic Chemistry Frontiers
researchProduct

Front Cover: Selective and Scalable Electrosynthesis of 2H ‐2‐(Aryl)‐benzo[ d ]‐1,2,3‐triazoles and Their N‐Oxides by Using Leaded Bronze Cathodes (C…

2020

Green chemistryChemistryArylOrganic ChemistryInorganic chemistryGeneral Chemistryengineering.materialElectrochemistryElectrosynthesisCatalysisCathodelaw.inventionchemistry.chemical_compoundFront coverlawengineeringBronzeChemistry – A European Journal
researchProduct

Carbocatalytic Oxidative Dehydrogenative Couplings of (Hetero)Aryls by Oxidized Multi‐Walled Carbon Nanotubes in Liquid Phase

2019

HNO3-oxidized carbon nanotubes catalyze oxidative dehydrogenative (ODH) carbon-carbon bond formation between electron-rich (hetero)aryls with O-2 as a terminal oxidant. The recyclable carbocatalytic method provides a convenient and an operationally easy synthetic protocol for accessing various benzofused homodimers, biaryls, triphenylenes, and related benzofused heteroaryls that are highly useful frameworks for material chemistry applications. Carbonyls/quinones are the catalytically active site of the carbocatalyst as indicated by model compounds and titration experiments. Further investigations of the reaction mechanism with a combination of experimental and DFT methods support the compet…

Reaction mechanism116 Chemical sciencesoxidative dehydrogenative couplingLiquid phaseOxidative phosphorylationCarbon nanotube010402 general chemistryHeterogeneous catalysis01 natural sciencesCatalysislaw.inventionlawcarbon nanotubecarbon nanotubesbiology010405 organic chemistryChemistryOrganic ChemistryC−C couplingCationic polymerizationcarbon nanotubes; C−C coupling; heterogeneous catalysis; oxidative dehydrogenative couplingActive siteGeneral ChemistryCombinatorial chemistry0104 chemical sciencesheterogeneous catalysisbiology.proteinheterogeneous catalysiTitrationC-C couplingChemistry – A European Journal
researchProduct

Selective and Scalable Electrosynthesis of 2H-2-(Aryl)-benzo[d]-1,2,3-triazoles and Their N-Oxides by Using Leaded Bronze Cathodes.

2020

Abstract Electrosynthesis of 2H‐2‐(aryl)benzo[d]‐1,2,3‐triazoles and their N‐oxides from 2‐nitroazobenzene derivatives is reported. The electrolysis is conducted in a very simple undivided cell under constant current conditions with a leaded bronze cathode and a glassy carbon anode. The product distribution between 2H‐2‐(aryl)benzo[d]‐1,2,3‐triazoles and their N‐oxides can be guided by simply controlling the current density and the amount of the charge applied. The reaction tolerates several sensitive functional groups in reductive electrochemistry. The usefulness and the applicability of the synthetic method is demonstrated by a formal synthesis of an antiviral compound.

Green chemistry540 Chemistry and allied sciencesazo compoundsreductionGlassy carbon010402 general chemistryElectrosynthesisElectrochemistry01 natural sciencesCatalysislaw.inventionchemistry.chemical_compoundlawsustainable chemistryElectrolysis010405 organic chemistryChemistryArylCommunicationOrganic ChemistryGeneral ChemistryCombinatorial chemistryCathodeCommunications0104 chemical sciencesAnodeElectrochemistry | Hot Paperelectrochemistry540 Chemienitrogen heterocyclesChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct