6533b85ffe1ef96bd12c1390

RESEARCH PRODUCT

Selective and Scalable Electrosynthesis of 2H-2-(Aryl)-benzo[d]-1,2,3-triazoles and Their N-Oxides by Using Leaded Bronze Cathodes.

Eduardo RodrigoTom WirtanenSiegfried R. Waldvogel

subject

Green chemistry540 Chemistry and allied sciencesazo compoundsreductionGlassy carbon010402 general chemistryElectrosynthesisElectrochemistry01 natural sciencesCatalysislaw.inventionchemistry.chemical_compoundlawsustainable chemistryElectrolysis010405 organic chemistryChemistryArylCommunicationOrganic ChemistryGeneral ChemistryCombinatorial chemistryCathodeCommunications0104 chemical sciencesAnodeElectrochemistry | Hot Paperelectrochemistry540 Chemienitrogen heterocycles

description

Abstract Electrosynthesis of 2H‐2‐(aryl)benzo[d]‐1,2,3‐triazoles and their N‐oxides from 2‐nitroazobenzene derivatives is reported. The electrolysis is conducted in a very simple undivided cell under constant current conditions with a leaded bronze cathode and a glassy carbon anode. The product distribution between 2H‐2‐(aryl)benzo[d]‐1,2,3‐triazoles and their N‐oxides can be guided by simply controlling the current density and the amount of the charge applied. The reaction tolerates several sensitive functional groups in reductive electrochemistry. The usefulness and the applicability of the synthetic method is demonstrated by a formal synthesis of an antiviral compound.

10.1002/chem.201905874https://pubmed.ncbi.nlm.nih.gov/31995654