0000000000338342

AUTHOR

T.n.t. Nguyen

A PDE model for the spatial dynamics of a voles population structured in age

Abstract We prove existence and stability of entropy weak solutions for a macroscopic PDE model for the spatial dynamics of a population of voles structured in age. The model consists of a scalar PDE depending on time, t , age, a , and space x = ( x 1 , x 2 ) , supplemented with a non-local boundary condition at a = 0 . The flux is linear with constant coefficient in the age direction but contains a non-local term in the space directions. Also, the equation contains a term of second order in the space variables only. Existence of solutions is established by compensated compactness, see Panov (2009), and we prove stability by a doubling of variables type argument.

research product

AN HYPERBOLIC-PARABOLIC PREDATOR-PREY MODEL INVOLVING A VOLE POPULATION STRUCTURED IN AGE

Abstract We prove existence and stability of entropy solutions for a predator-prey system consisting of an hyperbolic equation for predators and a parabolic-hyperbolic equation for preys. The preys' equation, which represents the evolution of a population of voles as in [2] , depends on time, t, age, a, and on a 2-dimensional space variable x, and it is supplemented by a nonlocal boundary condition at a = 0 . The drift term in the predators' equation depends nonlocally on the density of preys and the two equations are also coupled via classical source terms of Lotka-Volterra type, as in [4] . We establish existence of solutions by applying the vanishing viscosity method, and we prove stabil…

research product