0000000000338407

AUTHOR

Peter Schuck

showing 2 related works from this author

Continued fraction approximation for the nuclear matter response function

2008

A continued fraction approximation is used to calculate the Random Phase Approximation (RPA) response function of nuclear matter. The convergence of the approximation is assessed by comparing it with the numerically exact response function obtained with a typical effective finite-range interaction used in nuclear physics. It is shown that just the first order term of the expansion can give reliable results at densities up to the saturation density value.

PhysicsNuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theory010308 nuclear & particles physicsFísicaFOS: Physical sciencesFunction (mathematics)Nuclear matter01 natural sciencesTerm (time)Nuclear Theory (nucl-th)Approximation errorQuantum electrodynamics21.30.-x 21.60.Jz 21.65.-f0103 physical sciencesConvergence (routing)Fraction (mathematics)010306 general physicsSaturation (chemistry)Random phase approximation
researchProduct

New state of matter: heavy-fermion systems, quantum spin liquids, quasicrystals, cold gases, and high temperature superconductors

2018

We report on a new state of matter manifested by strongly correlated Fermi systems including various heavy-fermion (HF) metals, two-dimensional quantum liquids such as $\rm ^3He$ films, certain quasicrystals, and systems behaving as quantum spin liquids. Generically, these systems can be viewed as HF systems or HF compounds, in that they exhibit typical behavior of HF metals. At zero temperature, such systems can experience a so-called fermion-condensation quantum phase transition (FCQPT). Combining analytical considerations with arguments based entirely on experimental grounds we argue and demonstrate that the class of HF systems is characterized by universal scaling behavior of their ther…

Quantum phase transitionHigh-temperature superconductivityNon-Fermi liquid statesFOS: Physical sciencesQuantum phase transition01 natural sciencesNew state of matter010305 fluids & plasmaslaw.inventionQuantum spin liquidsSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated Electronslaw0103 physical sciencesGeneral Materials Science010306 general physicsQuantumSuperconductivityPhysicsFlat bandsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - SuperconductivityFermi surfaceStrongly correlated electron systemsFermionCondensed Matter PhysicsAtomic and Molecular Physics and OpticsHeavy fermionsHigh-Tc superconductivityCold gasesState of matterStrongly correlated materialQuasicrystals
researchProduct