0000000000338814

AUTHOR

Geoffrey Z. Iwata

Action potentials induce biomagnetic fields in Venus flytrap plants

Upon stimulation, plants elicit electrical signals that can travel within a cellular network analogous to the animal nervous system. It is well-known that in the human brain, voltage changes in certain regions result from concerted electrical activity which, in the form of action potentials (APs), travels within nerve-cell arrays. Electrophysiological techniques like electroencephalography, magnetoencephalography, and magnetic resonance imaging are used to record this activity and to diagnose disorders. In the plant kingdom, two types of electrical signals are observed: all-or-nothing APs of similar amplitudes to those seen in humans and animals, and slow-wave potentials of smaller amplitud…

research product

Battery Diagnostics with Sensitive Magnetometry

The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, or for sensing capacity loss mechanisms. Here, we demonstrate the use of atomic magnetometry to map the weak induced magnetic fields around a Li-ion battery cell as a function of state of charge and upon introducing mechanical defects. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materials under study upon discharge. In addition, the measurements reveal hitherto unknown long time-scale transient inte…

research product

Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond

Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the …

research product

Sensitive magnetometry in challenging environments

State-of-the-art magnetic field measurements performed in shielded environments under carefully controlled conditions rarely reflect the realities of those applications envisioned in the introductions of peer-reviewed publications. Nevertheless, significant advances in magnetometer sensitivity have been accompanied by serious attempts to bring these magnetometers into the challenging working environments in which they are often required. This review discusses the ways in which various (predominantly optically pumped) magnetometer technologies have been adapted for use in a wide range of noisy and physically demanding environments.

research product

Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells

The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materia…

research product

Rapid online solid-state battery diagnostics with optically pumped magnetometers

Applied Sciences 10(21), 7864 (2020). doi:10.3390/app10217864

research product