0000000000339092

AUTHOR

Rafael Luque

0000-0003-4190-1916

showing 3 related works from this author

Metal-Organic Frameworks as Versatile Heterogeneous Solid Catalysts for Henry Reactions

2021

Metal–organic frameworks (MOFs) have become one of the versatile solid materials used for a wide range of applications, such as gas storage, gas separation, proton conductivity, sensors and catalysis. Among these fields, one of the more well-studied areas is the use of MOFs as heterogeneous catalysts for a broad range of organic reactions. In the present review, the employment of MOFs as solid catalysts for the Henry reaction is discussed, and the available literature data from the last decade are grouped. The review is organized with a brief introduction of the importance of Henry reactions and structural properties of MOFs that are suitable for catalysis. The second part of the review dis…

Nitroaldol reactionMaterials sciencePharmaceutical ScienceReviewHeterogeneous catalysisCatalysisAnalytical ChemistryCatalysislcsh:QD241-441metal–organic frameworkslcsh:Organic chemistryCatalytic DomainDrug DiscoveryUreaGas separationAminesPhysical and Theoretical ChemistryMetal-Organic FrameworksHeterogeneous catalysisPrimary (chemistry)Organic ChemistryAmidesOrganic reactionChemical engineeringChemistry (miscellaneous)Molecular MedicineMetal-organic frameworkAmine gas treatingHenry reactionCopperMolecules
researchProduct

Lignin for energy applications – state of the art, life cycle, technoeconomic analysis and future trends

2022

Lignin in advanced energy applications: source, extraction methodolgy, structure/property relationships.

Environmental ChemistryPollutionGreen Chemistry
researchProduct

A giant exoplanet orbiting a very-low-mass star challenges planet formation models

2019

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…

010504 meteorology & atmospheric sciencesGas giant530 PhysicsFOS: Physical sciencesMinimum massAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsMultidisciplinary520 AstronomyGiant planetAstronomyPlanetary system620 EngineeringAccretion (astrophysics)ExoplanetOrbitAstrophysics - Solar and Stellar Astrophysics13. Climate actionAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary AstrophysicsScience
researchProduct