Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model
We study transitionless quantum driving in an infinite-range many-body system described by the Lipkin-Meshkov-Glick model. Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case. To this aim we develop a hybrid strategy combining shortcut to adiabaticity and optimal control that allows us to achieve remarkably good performance in suppressing the defect production across the phase transition.
System-environment correlations and Markovian embedding of quantum non-Markovian dynamics
We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed "ancillas", which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of "memory depth" where these correlations are established between the syste…
Structural change in multipartite entanglement sharing: a random matrix approach
We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random-matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-environment subsystems, the entanglement-sharing structure u…
Controllable Gaussian-Qubit Interface for Extremal Quantum State Engineering
We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.