Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs
In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …
Nondeterministic unitary OBDDs
We investigate the width complexity of nondeterministic unitary OBDDs (NUOBDDs). Firstly, we present a generic lower bound on their widths based on the size of strong 1-fooling sets. Then, we present classically cheap functions that are expensive for NUOBDDs and vice versa by improving the previous gap. We also present a function for which neither classical nor unitary nondeterminism does help. Moreover, based on our results, we present a width hierarchy for NUOBDDs. Lastly, we provide the bounds on the widths of NUOBDDs for the basic Boolean operations negation, union, and intersection.
Nondeterministic Unitary OBDDs
We investigate the width complexity of nondeterministic unitary OBDDs (NUOBDDs). Firstly, we present a generic lower bound on their widths based on the size of strong 1-fooling sets. Then, we present classically “cheap” functions that are “expensive” for NUOBDDs and vice versa by improving the previous gap. We also present a function for which neither classical nor unitary nondeterminism does help. Moreover, based on our results, we present a width hierarchy for NUOBDDs. Lastly, we provide the bounds on the widths of NUOBDDs for the basic Boolean operations negation, union, and intersection.
New results on classical and quantum counter automata
We show that one-way quantum one-counter automaton with zero-error is more powerful than its probabilistic counterpart on promise problems. Then, we obtain a similar separation result between Las Vegas one-way probabilistic one-counter automaton and one-way deterministic one-counter automaton. We also obtain new results on classical counter automata regarding language recognition. It was conjectured that one-way probabilistic one blind-counter automata cannot recognize Kleene closure of equality language [A. Yakaryilmaz: Superiority of one-way and realtime quantum machines. RAIRO - Theor. Inf. and Applic. 46(4): 615-641 (2012)]. We show that this conjecture is false, and also show several s…
Unary Probabilistic and Quantum Automata on Promise Problems
We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present a new family of unary promise problems with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.