0000000000341396
AUTHOR
A N Klucharev
Collisional and thermal ionization of sodium Rydberg atoms: II. Theory fornS,nP andnD states withn= 5–25
A stochastic model of associative ionization in collisions of Rydberg atoms with ground-state atoms is presented. The conventional Duman–Shmatov–Mihajlov–Janev (DSMJ) model treats the ionization as excitation of Rydberg electron to the continuum by the electric-dipole field generated by exchange interaction within the quasi-molecular ion. The stochastic model essentially extends this treatment by taking into account redistribution of population over a range of Rydberg states prior to ionization, which is caused by non-adiabatic processes in overlapping multiple level crossings of quasi-molecular Rydberg states. The redistribution is modelled as diffusion of electrons in the Rydberg energy s…
<title>Collisional and thermal ionization of sodium Rydberg atoms in single and crossed atomic beams</title>
The results of the experimental and theoretical study on associative ionization of laser excited Na Rydberg atoms in collisions with ground-state atoms and on thermal ionization by blackbody radiation in single and crossed effusive atomic beams are reported and discussed.
Collisional and thermal ionization of sodium Rydberg atoms III. Experiment and theory fornS andnD states withn= 8–20 in crossed atomic beams
The results of experimental and theoretical studies of collisional ionization of Na Rydberg atoms in nS and nD(n = 8–20) states are presented. Molecular and atomic ions from associative ionization and photoionization by blackbody radiation were detected after pulsed laser excitation of Rydberg states in crossed Na atomic beams. An original method of determination of associative ionization rate constants based on the measurement of ratios of molecular and atomic ion signals was used, which did not require the determination of absolute number density of Rydberg atoms. The measured rate constants of associative ionization of Rydberg atoms in collisions with ground-state Na atoms are compared w…