0000000000341455

AUTHOR

Fangjian Cai

showing 2 related works from this author

New BODIPY derivatives with triarylamine and truxene substituents as donors for organic bulk heterojunction photovoltaic cells

2021

Abstract We have designed two new BODIPY derivatives, denoted as 6a and 6b, substituted with truxene moiety and triphenylamine (TPA) unit groups and have investigated their optical and electrochemical properties. Dyes 6a and 6b were employed as donor along with PC71BM or Y6 as acceptor for the fabrication of binary and ternary organic solar cells. After optimization of the binary and ternary active layers, we have achieved over all power conversion efficiency (PCE) of 11.37 % and 13.32% for 6a:PC71BM:Y6 and 6b:PC71BM:Y6 ternary organic solar cells, respectively, which are higher than the binary organic solar cells based on PC71BM or Y6 acceptor. The higher power conversion efficiency for te…

Materials scienceOrganic solar cellRenewable Energy Sustainability and the EnvironmentEnergy conversion efficiencyPhotochemistryTriphenylamineAcceptorPolymer solar cellchemistry.chemical_compoundchemistryMoietyGeneral Materials ScienceBODIPYTernary operationSolar Energy
researchProduct

Efficient energy transfer in a tri-chromophoric dyad containing BODIPYs and corrole based on a truxene platform

2018

A star-shaped molecule was designed and synthesized based on a known central truxene platform. Two BODIPY derivatives and one corrole macrocycle were introduced and connected to the 2, 7 and 12-positions of the truxene unit by Suzuki coupling. The dyad was fully characterized by UV-vis absorption, proton nuclear magnetic resonance, mass spectrometry. The direction of energy transfer upon electronic excitation was explored, and the star-shaped molecule system exhibits a highly efficient photoinduced energy transfer process from the excited BODIPY part to the corrole unit.

chemistry.chemical_compound010405 organic chemistryChemistryEnergy transferMoleculeGeneral ChemistryCorroleBODIPY010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesEfficient energy useJournal of Porphyrins and Phthalocyanines
researchProduct