0000000000341610
AUTHOR
T. I. Dyuzheva
Photoluminescence excited by ArF and KrF lasers and optical absorption of stishovite mono-crystal
Two photoluminescence bands were found in a stishovite (silicon dioxide) mono-crystal sample under ArF (193 nm) and KrF (248 nm) excitation. The blue band is situated at 3.17 ± 0.02 eV in the case of ArF and at 3 ± 0.2 in the case of KrF. The UV band is at 4.55 ± 0.05 eV in the case of ArF and at 4.5 ± 0.05 eV in the case of KrF. The position of the UV emission band correlates with that excited by x rays. This position is 4.6 ± 0.05 eV with FWHM 0.8 ± 0.05 eV (Truhins et al 2003 Solid State Commun. 127 415). The blue band possesses slow decay kinetics with time constant 16 ± 2 µs and the UV band is fast on the level of 2 ± 0.5 ns, similarly for both lasers. Thermal quenching of both bands b…
Intrinsic absorption threshold of stishovite and coesite
Abstract The optical absorption spectra of the small mono-crystals samples of stishovite and coesite were studied at first. The intrinsic absorption threshold of stishovite is determined at 8.75 eV, being probably, highest in the family of different crystalline polymorph modifications of silicon dioxide. The absorption spectrum of stishovite is independent of temperature (studied in the range 290–450 K). The intrinsic absorption threshold of coesite mono-crystal situated near 8.6 eV at 293 K, coincides within experimental errors with that of α-quartz crystal, and depends on temperature, as used to be for the tetrahedron structured silicon dioxide crystalline modifications. A broad absorptio…
Luminescence of rutile structured crystalline silicon dioxide (stishovite)
Abstract Luminescence spectrum of synthetic mono-crystalline stishovite comprises a slow blue band at ~400 nm (~3.1 eV) and a fast UV band at ~260 nm (~4.7 eV), as well as some bands in near-infrared range of spectra. The NIR luminescence of stishovite crystal, excited with lasers 532 nm, 248 nm and 193 nm as well as x-ray, possesses several sharp lines. A zero phonon line is situated at 787 nm (1.57 eV) and grows with cooling. An anti-Stokes line is located at 771 nm (1.68 eV). This line disappears with cooling. In a powder sample of stishovite created by shock waves generated by the impact of a 50-m-diameter meteorite in Arizona 50,000 years ago, the PL broad blue band is situated at 425 …
Luminescence of coesite
Coesite is a polymorph modification of crystalline silicon dioxide with a tetrahedral structure. The luminescence of a single crystal of synthetic coesite was studied under excitation using x-rays, an electron beam, and excimer lasers KrF (248 nm), ArF (193 nm) and F2 (157 nm). Luminescence bands in the regions of 2.5 eV and 4.4 eV appear. The blue band is dependent on temperature and is composed of decay kinetics. Three main decay times are revealed, exhibiting luminescence of a different nature in the same range of the spectrum. One is in the ns range of time with a time constant of about 2 ns. The two other decay times are in the regions of 5 μs and 700 μs. The 5 μs component is also see…
Luminescence of different modifications of crystalline silicon dioxide: Stishovite and coesite
Abstract Luminescence of very small samples of single crystals of coesite and stishovite has been studied. The spectra were detected under ionizing radiation (X-ray and electron beam) and the decay kinetics of cathodoluminescence in the range of time from 10 ns to 3 ms was measured. The coesite luminescence possesses a broad band at 3 eV with exponential decay about 680 μs at 80 K. The nature of this luminescence was explained as a self-trapped exciton creation in tetrahedron framework. The stishovite luminescence possesses two bands—blue (2.8 eV) and UV (4.7 eV). The UV band intensity grows more than 20 times with irradiation dose from initial level. This shows that the corresponding lumin…