0000000000341819
AUTHOR
José A. Vallejo
Quillen superconnections and connections on supermanifolds
Given a supervector bundle $E = E_0\oplus E_1 \to M$, we exhibit a parametrization of Quillen superconnections on $E$ by graded connections on the Cartan-Koszul supermanifold $(M;\Omega (M))$. The relation between the curvatures of both kind of connections, and their associated Chern classes, is discussed in detail. In particular, we find that Chern classes for graded vector bundles on split supermanifolds can be computed through the associated Quillen superconnections.
The Poincar\'e-Cartan Form in Superfield Theory
An intrinsic description of the Hamilton-Cartan formalism for first-order Berezinian variational problems determined by a submersion of supermanifolds is given. This is achieved by studying the associated higher-order graded variational problem through the Poincar\'e-Cartan form. Noether theorem and examples from superfield theory and supermechanics are also discussed.
The structure of Fedosov supermanifolds
Abstract Given a supermanifold ( M , A ) which carries a supersymplectic form ω , we study the Fedosov structures that can be defined on it, through a set of tensor fields associated to any symplectic connection ∇ . We give explicit recursive expressions for the resulting curvature and study the particular case of a base manifold M with constant holomorphic sectional curvature.
Supermanifolds, Symplectic Geometry and Curvature
We present a survey of some results and questions related to the notion of scalar curvature in the setting of symplectic supermanifolds.
Nambu-Poisson manifolds and associated n-ary Lie algebroids
We introduce an n-ary Lie algebroid canonically associated with a Nambu-Poisson manifold. We also prove that every Nambu-Poisson bracket defined on functions is induced by some differential operator on the exterior algebra, and characterize such operators. Some physical examples are presented.