0000000000342002

AUTHOR

Giacomo Innocenti

0000-0002-2110-826x

Reduced complexity models in the identification of dynamical networks: Links with sparsification problems

In many applicative scenarios it is important to derive information about the topology and the internal connections of more dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology. We cast the problem as the optimization of a cost function operating a trade-off between accuracy and complexity in the final model. We address the problem of reducing the complexity by fixing a certain degree of sparsity, and trying to find the solution that “better” satisfi…

research product

OLS Identification of network topologies

Abstract In many applications, it is important to derive information about the topology and the internal connections of more dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology. We cast the problem as the optimization of a cost function where a set of parameters are used to operate a trade-off between accuracy and complexity in the final model. The problem of reducing the complexity is addressed by fixing a certain degree of sparsity and finding the…

research product

Model Identification of a Network as Compressing Sensing

In many applications, it is important to derive information about the topology and the internal connections of dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology, and unveiling an unknown structure as the estimate of a "sparse Wiener filter". A geometric interpretation of the problem in a pre-Hilbert space for wide-sense stochastic processes is provided. We cast the problem as the optimization of a cost function where a set of parameters are used t…

research product

Impact of chaotic dynamics on the performance of metaheuristic optimization algorithms : An experimental analysis

Random mechanisms including mutations are an internal part of evolutionary algorithms, which are based on the fundamental ideas of Darwin's theory of evolution as well as Mendel's theory of genetic heritage. In this paper, we debate whether pseudo-random processes are needed for evolutionary algorithms or whether deterministic chaos, which is not a random process, can be suitably used instead. Specifically, we compare the performance of 10 evolutionary algorithms driven by chaotic dynamics and pseudo-random number generators using chaotic processes as a comparative study. In this study, the logistic equation is employed for generating periodical sequences of different lengths, which are use…

research product