0000000000342065

AUTHOR

Julian Robert Ochsmann

showing 3 related works from this author

A Heteroleptic Push-Pull Substituted Iron(II) Bis(tridentate) Complex with Low-Energy Charge-Transfer States

2014

A heteroleptic iron(II) complex [Fe(dcpp)(ddpd)](2+) with a strongly electron-withdrawing ligand (dcpp, 2,6-bis(2-carboxypyridyl)pyridine) and a strongly electron-donating tridentate tripyridine ligand (ddpd, N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) is reported. Both ligands form six-membered chelate rings with the iron center, inducing a strong ligand field. This results in a high-energy, high-spin state ((5) T2 , (t2g )(4) (eg *)(2) ) and a low-spin ground state ((1) A1 , (t2g )(6) (eg *)(0) ). The intermediate triplet spin state ((3) T1 , (t2g )(5) (eg *)(1) ) is suggested to be between these states on the basis of the rapid dynamics after photoexcitation. The low-energy …

Ligand field theorySpin statesLigandOrganic ChemistryGeneral ChemistryPhotochemistryElectrochemistryCatalysislaw.inventionCrystallographychemistry.chemical_compoundchemistrylawExcited statePyridineGround stateElectron paramagnetic resonanceChemistry - A European Journal
researchProduct

Aminoferrocene and Ferrocene Amino Acid as Electron Donors in Modular Porphyrin–Ferrocene and Porphyrin–Ferrocene–Porphyrin Conjugates

2014

New amide-linked porphyrin–ferrocene conjugates [M(PAr)–Fc] were prepared from aminoferrocene and a carboxy-substituted meso-tetraaryl-porphyrin [M = 2H, Zn; Ar = mesityl (Mes), C6F5: 3a, 3e, Zn-3a, Zn-3e]. A further porphyrin building block was attached to the second cyclopentadienyl ring of the ferrocene moiety to give the metallopeptides M(PMes)–Fc–M(PAr) (M = 2H, Zn; Ar = C6H5, 4-C6H4F: 6b, 6c, Zn-6b, Zn-6c). The effects of the Ar substituents, the porphyrin central atom M and the presence of the second porphyrin at the ferrocene hinge on the excited-state dynamics was studied by optical absorption spectroscopy, electrochemistry, steady-state emission, time-resolved fluorescence measure…

Inorganic Chemistrychemistry.chemical_compoundElectron transferFerroceneAbsorption spectroscopyCyclopentadienyl complexChemistryUltrafast laser spectroscopySpectroscopyPhotochemistryPorphyrinPhotoinduced electron transferEuropean Journal of Inorganic Chemistry
researchProduct

Tuning Reductive and Oxidative Photoinduced Electron Transfer in Amide‐Linked Anthraquinone–Porphyrin–Ferrocene Architectures

2014

Porphyrin amino acids 3a–3h with meso substituents Ar of tunable electron-donating power (Ar = 4-C6H4OnBu, 4-C6H4OMe, 4-C6H4Me, Mes, C6H5, 4-C6H4F, 4-C6H4CF3, C6F5) have been linked at the N terminus to anthraquinone Q as electron acceptor through amide bonds to give Q-PAr dyads 4a–4h. These were conjugated to ferrocene Fc at the C terminus as electron donor to give the acceptor-chromophore-donor Q-PAr-Fc triads 6a–6h. To further modify the energies of the electronically excited and charge-separated states, the triads 6a–6h were metallated with zinc(II) to give the corresponding Q-(Zn)PAr-Fc triads Zn-6a–Zn-6h. The Q-PAr1 dyad (Ar1 = C6H5) was further extended with a second porphyrin PAr2 (…

Inorganic Chemistrychemistry.chemical_classificationchemistry.chemical_compoundElectron transferFerrocenechemistryElectron donorElectron acceptorChromophorePhotochemistryPorphyrinPhotoinduced electron transferQuinoneEuropean Journal of Inorganic Chemistry
researchProduct