0000000000342274

AUTHOR

Edward C. Navarre

0000-0001-5727-8052

Complexation of phosphine ligands with peracetylated β-cyclodextrin in supercritical carbon dioxide: Effect of temperature and cosolvent on the equilibrium constant

Abstract The interaction between peracetylated-β-cyclodextrin and tert-butyl and adamantyl functionalized triphenylphosphine derivatives was studied in supercritical carbon dioxide (scCO 2 ) based solvent media by UV–vis spectroscopy. The equilibrium constant for a 1:1 complexation reaction was obtained from titration spectra both in pure carbon dioxide and in the presence of methanol as a cosolvent in the temperature range 308–323 K to estimate the internal energy and entropy of the inclusion equilibrium. The values of the equilibrium constants were found significantly smaller than those obtained in aqueous solution with analogous phosphines and substantially independent of the nature of t…

research product

Complexation of phosphine ligands with peracetylated β-cyclodextrin in supercritical carbon dioxide: spectroscopic determination of equilibrium constants

The interaction between peracetylated beta-cyclodextrin and several triphenyl phosphine derivatives was studied in supercritical carbon dioxide (scCO2) by UV-visible spectroscopy. The equilibrium constant for a 1:1 complexation reaction was obtained from titration spectra and calculated using two established mathematical models. The values of the equilibrium constants are 1-3 orders of magnitude smaller than those obtained in aqueous solution with analogous phosphines. This is likely due to the absence in scCO2 of the hydrophobic effect, which is replaced by a corresponding, but weaker, CO2-phobic effect. The largest value of Kf was found for complexes of diphenyl(4-adamantylphenyl)phosphin…

research product

Inclusion complexes of triphenylphosphine derivatives and peracetylated-β-cyclodextrin in supercritical carbon dioxide

The supramolecular chemistry of peracetylated-β-CD (perAc-β-CD) as a host for triphenyphosphine derivatives has been studied in supercritical (scCO2) using UV absorption spectroscopy. It was found that the association constant in scCO2 at 40°C and 300 bar is 10 to 1000 times smaller compared to analogous systems in aqueous solvent. Studies of the thermodynamics of the inclusion process found an enthalpy of association of -30 kJ/mole and an entropy of -55 J/moleK. This difference with respect to water is attributed to the absence of the hydrophobic effect in scCO2 due to the much smaller polarity of scCO2 versus water. To further explore the effect of the solvent on the association constant,…

research product